Skip to content

RweBs/HotKE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

HET-KG

HET-KG is implemented on top of DGL-KE and supports hot embedding cache optimization to reduce training time.

Installation

$ yum install python3
$ pip3 install torch dgl==0.4.3 dglke==0.1.0
$ sudo cp dglke /usr/local/lib/python3.6/site-packages/ (your installation directory)

Start

Based on DGL-KE, HET-KG adds parameters related to hot embedding training.

dglke_dist_train --path ~/my_task  --ip_config ~/my_task/ip_config.txt \
--num_client_proc 16 --model_name TransE_l2 --dataset FB15k --data_path ~/my_task --hidden_dim 400 \
--gamma 16.0 --lr 0.25 --batch_size 32 --neg_sample_size 8 --max_step 10000   --log_interval 10000    \
--batch_size_eval 16 --test -adv --regularization_coef 1.00E-07 --num_thread 1 --push_step 16 --topk 64 --dynamic_prefetch 1

explanation:
'--push_step x' synchronize hot embeddings with parameter servers every x rounds
'--topk y' number of hot embeddings in each worker (if the 'ent_topk' and 'rel_topk' are not set, the hot embeddings are selected according to the frequency)
'--ent_topk' number of entity hot embeddings in each worker
'--rel_topk' number of relation hot embeddings in each worker
'--dynamic_prefetch z' z=0 (using constant partial stale), z=1 (using dynamic partial stale)

Citation

  • Sicong Dong, Xupeng Miao, Pengkai Liu, Xin Wang, Bin Cui, Jianxin Li. HET-KG: Communication-Efficient Knowledge Graph Embedding Training via Hotness-Aware Cache. The 38th IEEE International Conference on Data Engineering (ICDE 2022, Research Track).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages