-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This is the first double precision SIMD benchmark. Newly covered SIMD instructions: f64x2.add f64x2.mul v128.load64_splat
- Loading branch information
Showing
3 changed files
with
234 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
/* | ||
* Copyright (c) 2023-present Samsung Electronics Co., Ltd | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
* | ||
* Adapted from https://github.com/ngzhian/simd-benchmarks */ | ||
|
||
#include <stdio.h> | ||
#include <stdint.h> | ||
|
||
// 4x4 square matrix | ||
#define MATRIX_SIZE 16 | ||
|
||
void multiply_scalar(const double m1[], const double m2[], double out_m[]) | ||
{ | ||
/* unrolled matrix multiplication */ | ||
double a00 = m1[0]; | ||
double a01 = m1[1]; | ||
double a02 = m1[2]; | ||
double a03 = m1[3]; | ||
double a10 = m1[4]; | ||
double a11 = m1[5]; | ||
double a12 = m1[6]; | ||
double a13 = m1[7]; | ||
double a20 = m1[8]; | ||
double a21 = m1[9]; | ||
double a22 = m1[10]; | ||
double a23 = m1[11]; | ||
double a30 = m1[12]; | ||
double a31 = m1[13]; | ||
double a32 = m1[14]; | ||
double a33 = m1[15]; | ||
|
||
double b0 = m2[0]; | ||
double b1 = m2[1]; | ||
double b2 = m2[2]; | ||
double b3 = m2[3]; | ||
out_m[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; | ||
out_m[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; | ||
out_m[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; | ||
out_m[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; | ||
|
||
b0 = m2[4]; | ||
b1 = m2[5]; | ||
b2 = m2[6]; | ||
b3 = m2[7]; | ||
out_m[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; | ||
out_m[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; | ||
out_m[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; | ||
out_m[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; | ||
|
||
b0 = m2[8]; | ||
b1 = m2[9]; | ||
b2 = m2[10]; | ||
b3 = m2[11]; | ||
out_m[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; | ||
out_m[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; | ||
out_m[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; | ||
out_m[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; | ||
|
||
b0 = m2[12]; | ||
b1 = m2[13]; | ||
b2 = m2[14]; | ||
b3 = m2[15]; | ||
out_m[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; | ||
out_m[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; | ||
out_m[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; | ||
out_m[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; | ||
} | ||
|
||
double runtime() | ||
{ | ||
double m1[MATRIX_SIZE]; | ||
double m2[MATRIX_SIZE]; | ||
double out[MATRIX_SIZE]; | ||
double sum=0; | ||
|
||
for (int i = 0; i < MATRIX_SIZE; i++) { | ||
m1[i] = (double)i; | ||
m2[i] = (double)i; | ||
} | ||
multiply_scalar(m1, m2, out); | ||
for (int i = 0; i < MATRIX_SIZE; i++) { | ||
sum += out[i]; | ||
} | ||
return sum; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
/* | ||
* Copyright (c) 2023-present Samsung Electronics Co., Ltd | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
* | ||
* Adapted from https://github.com/ngzhian/simd-benchmarks */ | ||
|
||
#include <stdio.h> | ||
#include <stdint.h> | ||
#include <wasm_simd128.h> | ||
|
||
// 4x4 square matrix | ||
#define MATRIX_SIZE 16 | ||
|
||
void multiply_simd(const double m1[], const double m2[], double out_m[]) | ||
{ | ||
v128_t a0 = wasm_v128_load(m1 + 0); | ||
v128_t a1 = wasm_v128_load(m1 + 2); | ||
v128_t a2 = wasm_v128_load(m1 + 4); | ||
v128_t a3 = wasm_v128_load(m1 + 6); | ||
v128_t a4 = wasm_v128_load(m1 + 8); | ||
v128_t a5 = wasm_v128_load(m1 + 10); | ||
v128_t a6 = wasm_v128_load(m1 + 12); | ||
v128_t a7 = wasm_v128_load(m1 + 14); | ||
|
||
v128_t b0 = wasm_v128_load(m2 + 0); | ||
v128_t b1 = wasm_v128_load(m2 + 2); | ||
|
||
wasm_v128_store(out_m + 0, | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b0, 0)), a0), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b0, 1)), a2), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b1, 0)), a4), | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b1, 1)), a6))))); | ||
wasm_v128_store(out_m + 2, | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b0, 0)), a1), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b0, 1)), a3), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b1, 0)), a5), | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b1, 1)), a7))))); | ||
|
||
v128_t b2 = wasm_v128_load(m2 + 4); | ||
v128_t b3 = wasm_v128_load(m2 + 6); | ||
|
||
wasm_v128_store(out_m + 4, | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b2, 0)), a0), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b2, 1)), a2), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b3, 0)), a4), | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b3, 1)), a6))))); | ||
wasm_v128_store(out_m + 6, | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b2, 0)), a1), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b2, 1)), a3), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b3, 0)), a5), | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b3, 1)), a7))))); | ||
|
||
v128_t b4 = wasm_v128_load(m2 + 8); | ||
v128_t b5 = wasm_v128_load(m2 + 10); | ||
|
||
wasm_v128_store(out_m + 8, | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b4, 0)), a0), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b4, 1)), a2), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b5, 0)), a4), | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b5, 1)), a6))))); | ||
wasm_v128_store(out_m + 10, | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b4, 0)), a1), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b4, 1)), a3), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b5, 0)), a5), | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b5, 1)), a7))))); | ||
|
||
v128_t b6 = wasm_v128_load(m2 + 12); | ||
v128_t b7 = wasm_v128_load(m2 + 14); | ||
|
||
wasm_v128_store(out_m + 12, | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b6, 0)), a0), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b6, 1)), a2), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b7, 0)), a4), | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b7, 1)), a6))))); | ||
wasm_v128_store(out_m + 14, | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b6, 0)), a1), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b6, 1)), a3), | ||
wasm_f64x2_add( | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b7, 0)), a5), | ||
wasm_f64x2_mul(wasm_f64x2_splat(wasm_f64x2_extract_lane(b7, 1)), a7))))); | ||
} | ||
|
||
double runtime() | ||
{ | ||
double m1[MATRIX_SIZE]; | ||
double m2[MATRIX_SIZE]; | ||
double out[MATRIX_SIZE]; | ||
double sum=0; | ||
|
||
for (int i = 0; i < MATRIX_SIZE; i++) { | ||
m1[i] = (double)i; | ||
m2[i] = (double)i; | ||
} | ||
multiply_simd(m1, m2, out); | ||
for (int i = 0; i < MATRIX_SIZE; i++) { | ||
sum += out[i]; | ||
} | ||
return sum; | ||
} |