Skip to content

Notebooks for fine-tuning and evaluating a pre-trained BERT model to the task of semantic parameter matching in Web APIs

License

Notifications You must be signed in to change notification settings

SebastianKotstein/Parameter-Matching-Web-APIs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Semantic Parameter Matching in Web APIs with Transformer-based Question Answering

This repository is the official implementation of the paper "Semantic Parameter Matching in Web APIs with Transformer-based Question Answering" (see citation) and contains notebooks for fine-tuning and evaluating a pre-trained BERT model to the task of semantic parameter matching in Web APIs. Additional materials (datasets, model checkpoints, and reports of executed notebooks) can be found on Zenodo. The fine-tuned model (best checkpoint with a top-k accuracy of 81.46% for k=1) is available on Hugging Face.

Web API and UI for Inference

We implemented a Flask application that places our model behind a Web API and UI for inference. To use this application, navigate to tools and create a docker image with:

docker build -t restberta-core .

Start the docker container with:

docker run -d -p 80:80 --name pm-cpu restberta-core

If you want to start the application for another Web API integration task, i.e., with another RESTBERTa model (e.g., for endpoint discovery, see RESTBERTa), specify the model as ENV parameter:

docker run -d -p 80:80 -e MODEL=SebastianKotstein/restberta-qa-endpoint-discovery --name ed-cpu restberta-core

Web UI

To open the Web UI, use a browser and navigate to http://localhost:80.

Web API

Use the following cURL to make a prediction:

curl -L 'http://localhost:80/predict' \
-H 'Accept: application/vnd.skotstein.restberta-core.results.v1+json' \
-H 'Content-Type: application/vnd.skotstein.restberta-core.schemas.v1+json' \
-d ' {
 "schemas":[
    {
      "schemaId": "s00",
      "name": "My schema",
      "value": "state units auth.key location.city location.city_id location.country location.lat location.lon location.postal_code",
      "queries": [
        {
          "queryId": "q0",
          "name": "My query",
          "value": "The ZIP of the city",
          "verboseOutput": true
        }
      ]
    }
  ]
}'

Citation

@INPROCEEDINGS{10.1109/SOSE58276.2023.00020,
  author={Kotstein, Sebastian and Decker, Christian},
  booktitle={2023 IEEE International Conference on Service-Oriented System Engineering (SOSE)}, 
  title={Semantic Parameter Matching in Web APIs with Transformer-based Question Answering}, 
  year={2023},
  volume={},
  number={},
  pages={114-123},
  doi={10.1109/SOSE58276.2023.00020}}

About

Notebooks for fine-tuning and evaluating a pre-trained BERT model to the task of semantic parameter matching in Web APIs

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published