Skip to content

Commit

Permalink
wait message
Browse files Browse the repository at this point in the history
  • Loading branch information
christian-igel committed May 20, 2024
1 parent 72df68f commit c94a906
Showing 1 changed file with 1 addition and 309 deletions.
310 changes: 1 addition & 309 deletions docs/index.html
Original file line number Diff line number Diff line change
@@ -1,312 +1,4 @@
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta name="keywords" content="Shark Machine Learning" />
<meta name="robots" content="all" />
<title>Shark Machine Learning Library</title>
<link rel="shortcut icon" href="shark16.ico"/>
<link rel="stylesheet" href="frontpage.css">
<script>
function smoothScroll(name)
{
var element = document.getElementsByName(name)[0];
var initialpos = window.pageYOffset || document.documentElement.scrollTop;
var targetpos = element.getBoundingClientRect().top + window.scrollY - 50;
var t = 0;
for (var i=1; i<=12; i++) setTimeout(function()
{
t++;
var coeff = Math.sin(t * Math.PI / 24);
window.scrollTo(0, (1.0 - coeff) * initialpos + coeff * targetpos);
}, 20*i);
}
function onSearch(event)
{
event = event || window.event;
if (event.keyCode == 13)
{
// submit search to google
var term = document.getElementById('search').value
theform = document.createElement("form");
theform.method="GET";
theform.action="http://www.google.com/search";
theinput = document.createElement("input");
theinput.type = "text";
theinput.name = "q";
theinput.value = term + " site:http://shark-ml.org/";
theform.appendChild(theinput);
document.body.appendChild(theform);
theform.submit();
}
}
function toggleLegalNotice()
{
if (document.getElementById("legal").style.display == "block")
{
document.getElementById("legal").style.display = "none";
}
else
{
document.getElementById("legal").style.display = "block";
setTimeout(smoothScroll("legal"), 1);
}
}
function init()
{
document.getElementById('search').addEventListener('keypress', onSearch);
}
</script>
</head>

<body onload="init()">

<!-- header -->
<div id="header"><div id="header-content">
<a href="#section-home" onclick="smoothScroll('section-home'); return false;"><span id="shark">Shark</span></a>
&nbsp;
<input id="search" class="menu" type="text" placeholder="search" />
&nbsp;
<a href="#section-news" onclick="smoothScroll('section-news'); return false;"><span class="menu">News</span></a>
&nbsp;
<a href="#section-downloads" onclick="smoothScroll('section-downloads'); return false;"><span class="menu">Downloads</span></a>
&nbsp;
<a href="#section-getting-started" onclick="smoothScroll('section-getting-started'); return false;"><span class="menu">Quick&nbsp;Start</span></a>
&nbsp;
<a href="sphinx_pages/build/html/rest_sources/tutorials/tutorials.html"><span class="menu">Documentation</span></a>
&nbsp;
<a href="#section-credit" onclick="smoothScroll('section-credit'); return false;"><span class="menu">Credits</span></a>
</div></div>

<div id="spacer"></div>

<!-- eye-catcher -->
<div class="section-white"><div class="section-content">
<a name="section-home"></a>
<h1>Shark &ndash; Machine Learning</h1>
<div id="eye-catcher"></div>
<b>Shark is a fast, modular, feature-rich open-source C++ machine learning library.</b>
</p>
<p>
It provides methods for linear and nonlinear optimization, kernel-based learning
algorithms, neural networks, and various other machine learning techniques.
It serves as a powerful toolbox for real world applications as well as for research.
Shark works on Windows, MacOS&nbsp;X, and Linux. It comes with extensive documentation.
Shark is licensed under the GNU Lesser General Public License.
</p>
</div></div>

<!-- news -->
<div class="section-colored"><div class="section-content">
<a name="section-news"></a>
<h2>News</h2>
<h3>Shark 4.0 Released</h3>
<p><span class="date">Juni 9, 2018:</span> We are happy to announce the official release of Shark 4.0.0</p>
<h3>Shark 3.1 Released</h3>
<p><span class="date">March 1, 2016:</span> We are happy to announce the official release of Shark 3.1.0.</p>
<h3>Shark 3.0 Released</h3>
<p><span class="date">October 27, 2015:</span> We are happy to announce the official release of Shark 3.0.0.</p>

<h3>Shark moves to GitHub</h3>
<p><span class="date">October 9, 2015:</span> Shark moved to GitHub. Please update your repositories, see the downloads page for more details.</p>

<h3>Shark goes LGPL</h3>
<p>As of <span class="date">January 2014</span>, Shark is distributed under the permissive
<a href="http://www.gnu.org/copyleft/lesser.html">GNU Lesser General Public License</a>.</p>
<p><img src="lgplv3-147x51.png"/></p>

</div></div>

<!-- downloads -->
<div class="section-white"><div class="section-content">
<a name="section-downloads"></a>
<h2>Downloads</h2>
<p>
The current stable version is Shark&nbsp;4.0, released 9-6-2018.
</p>
<div class="note">
Shark&nbsp;4 is largely incompatible with earlier versions of Shark. We have made interfaces cleaner and support now computation with floating point precision.
There is also experimental support for GPU compations which is expanded in future minor releases.
</div>
<h3>Source Packages</h3>
<p>
We have two source packages available:<br/>
<a class="download" href="https://github.com/Shark-ML/Shark/archive/v4.0.0.zip"><img class="downloadicon" src="download.png">&nbsp;&nbsp;&nbsp;&nbsp;Shark-4.0.0.zip</a>
<a class="download" href="https://github.com/Shark-ML/Shark/archive/v4.0.0.tar.gz"><img class="downloadicon" src="download.png">&nbsp;&nbsp;&nbsp;&nbsp;Shark-4.0.0.tar.gz</a>
</p>
<h3>Shark Repository</h3>
<p>
Get the current Shark repository snapshot:
<div id="git-clone">
git clone https://github.com/Shark-ML/Shark/
</div>
</p>
<p>
<table class="status">
<tr>
<th>OS</th>
<th>coverage</th>
<th>status</th>
<th>service</th>
</tr>
<tr>
<td>Linux and Mac OS</td><td>library and unit tests</td>
<td><img src="https://travis-ci.org/Shark-ML/Shark.svg?branch=master" alt="build results Linux and Mac OS"></td>
<td><a href="https://travis-ci.org/Shark-ML">travis-ci</a></td>
</tr>
<tr>
<td>Windows</td><td>library only, no unit tests</td>
<td><img src="https://ci.appveyor.com/api/projects/status/github/shark-ml/shark?branch=master&svg=true" alt="build results Windows"></td>
<td><a href="http://www.appveyor.com/">appveyor</a></td>
</tr>
</table>
</p>
</div></div>

<!-- quick start -->
<div class="section-colored"><div class="section-content">
<a name="section-getting-started"></a>
<h2>Quick Start</h2>
<p>
Let's demonstrate basic use of Shark with very few lines of code.
This is C++, so we start with includes.
</p>
<div class="code"><span class="preproc">#include &lt;shark/Data/Download.h&gt;
#include &lt;shark/Algorithms/Trainers/LDA.h&gt;
#include &lt;shark/ObjectiveFunctions/Loss/ZeroOneLoss.h&gt;</span>
<span class="keyword">using namespace</span> shark;</div>
<p>
Let's load some data for learning.
</p>
<div class="code">ClassificationDataset traindata;
downloadCsvData(traindata,
<span class="string">"www.shark-ml.org/data/quickstart-train.csv"</span>,
LAST_COLUMN,
<span class="string">' '</span>);
</div>
<p>
The next step is to create a predictive model. Here we use a simple linear classifier.
</p>
<div class="code">LinearClassifier&lt;&gt; classifier;</div>
<p>
The core step of learning is to train the model on data using a trainer.
In Shark, the trainer is not glued to the model. Instead it is a separate object.
Here, good old Linear Discriminant Analysis (LDA) suits our needs.
</p>
<div class="code">LDA lda;
lda.train(classifier, traindata);</div>
<p>
Congrats! We have a readily trained classifier.
Let's try it out by applying it to new data.
</p>
<div class="code">ClassificationDataset testdata;
downloadCsvData(testdata,
<span class="string">"www.shark-ml.org/data/quickstart-test.csv"</span>,
LAST_COLUMN,
<span class="string">' '</span>);
ZeroOneLoss&lt;&gt; loss;
<span class="keyword">double</span> error = loss(testdata.labels(), classifier(testdata.inputs()));</div>
<p>
Further reading:
<ul>
<li><a href="sphinx_pages/build/html/rest_sources/installation.html">Installation Guide</a></li>
<li><a href="sphinx_pages/build/html/rest_sources/tutorials/tutorials.html">Tutorials</a></li>
</ul>
</p>
</div></div>

<!-- Why Shark? -->
<div class="section-white"><div class="section-content">
<a name="section-why-shark"></a>
<h2>Why Shark?</h2>

<h3>Speed and flexibility</h3>
<p>
Shark provides an excellent trade-off between flexibility and
ease-of-use on the one hand, and computational efficiency on the other.
</p>

<h3>One for all</h3>
<p>
Shark offers numerous algorithms from various machine learning and computational intelligence domains in a way that they can be easily combined and extended.
</p>

<h3>Unique features</h3>
<p>
Shark comes with a lot of powerful algorithms that are to our best knowledge not implemented in any other library, for example in the domains of model selection and training of binary and multi-class SVMs, or evolutionary single- and multi-objective optimization.
</p>
</div></div>

<!-- credits and copyright -->
<div class="section-colored"><div class="section-content">
<a name="section-credit"></a>
<h2>Credits and Copyright</h2>
<h3>Citing Shark</h3>
<p>
We kindly ask you to cite Shark in academic work as:
</p>
<p style='font-family: monospace'>
Christian Igel, Verena Heidrich-Meisner, and Tobias Glasmachers.
Shark.
Journal of Machine Learning Research 9, pp. 993-996, 2008.
<p>
The article's bibtex entry reads:
</p>
<p>
<pre style='font-family: monospace'>
@Article{shark08,
author = {Christian Igel and Verena Heidrich-Meisner and Tobias Glasmachers},
title = {Shark},
journal = {Journal of Machine Learning Research},
year = {2008},
volume = {9},
pages = {993--996}
}
</pre>
</p>

<h3>License</h3>
<p>
The Shark library is made available under the
<a href="http://www.gnu.org/copyleft/lesser.html">GNU Lesser General Public License</a>.
</p>
<p>
<img src="lgplv3-147x51.png">
</p>


<h3>Hosting institutions</h3>

<p>
The Shark machine learning library is jointly maintained by researchers from
<ul>
<li><a target="_blank" href="http://www.ini.rub.de/">Institut für Neuroinformatik (INI), Ruhr-Universität Bochum, Germany</a></li>
<li><a target="_blank" href="http://www.diku.dk/">Department of Computer Science (DIKU), University of Copenhagen, Denmark</a></li>
</ul>
</p>

</div></div>

<!-- footer -->
<div id="footer"><div id="footer-content">
<span class="legal-notice" onclick="toggleLegalNotice();">legal notice</span>
<div id="legal" name="legal">
<p>
Copyright (C) 2015-2018 Shark development team.
</p>
<p>
This website is provided in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
</p>
<p>
The website contains links to external content. The Shark developers
have no control over the contents of externally linked websites.
Therefore they explicitly disclaim responsibility for the contents of
externally linked pages.
</p>
</div>
</div></div>

</body>
Wait for it ... upadte ahead ... come back mid June!
</html>

0 comments on commit c94a906

Please sign in to comment.