Skip to content

Commit

Permalink
Quelques corrections.
Browse files Browse the repository at this point in the history
  • Loading branch information
Skyost committed Jan 8, 2024
1 parent 6443aa6 commit 1bac5eb
Show file tree
Hide file tree
Showing 2 changed files with 3 additions and 3 deletions.
2 changes: 1 addition & 1 deletion content/latex/common.tex
Original file line number Diff line number Diff line change
Expand Up @@ -146,7 +146,7 @@

\providecommand{\lesson}[3]{%
\title{#3}%
\hypersetup{pdftitle={#3}}%
\hypersetup{pdftitle={#2 : #3}}%
\setcounter{section}{\numexpr #2 - 1}%
\section{#3}%
\fancyhead[R]{\truncate{0.73\textwidth}{#2 : #3}}%
Expand Down
4 changes: 2 additions & 2 deletions content/latex/lecons/239.tex
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@
\item $\forall t \in I$, $x \mapsto f(t,x) \in L_1(X)$.
\item p.p. en $x \in X$, $t \mapsto f(t,x) \in \mathcal{C}^k(I)$. On notera $\left(\frac{\partial}{\partial t}\right)^j f$ la $j$-ième dérivée définie presque partout pour $j \in \llbracket 0, k \rrbracket$.
\item $\forall j \in \llbracket 0, k \rrbracket$, $\forall K \subseteq I$ compact, $\exists g_{j,K} \in L_1(X)$ positive telle que
\[ \left| \left(\frac{\partial}{\partial t}\right)^j f(x,t) \right| \leq g_{j,K}(x) \quad \forall t \in I, \text{p.p. en } x \]
\[ \left| \left(\frac{\partial}{\partial t}\right)^j f(x,t) \right| \leq g_{j,K}(x) \quad \forall t \in K, \text{p.p. en } x \]
\end{enumerate}
Alors $\forall j \in \llbracket 0, k \rrbracket$, $\forall t \in I$, $x \mapsto \left(\frac{\partial}{\partial t}\right)^j f(x,t) \in L_1(X)$ et $F \in \mathcal{C}^k(I)$ avec
\[ \forall j \in \llbracket 0, k \rrbracket, \, \forall t \in I, \, F^{(j)}(t) = \int_X \left(\frac{\partial}{\partial t}\right)^j f(x, t) \, \mathrm{d}\mu(x) \]
Expand Down Expand Up @@ -142,7 +142,7 @@
\item $\forall z \in \Omega$, $x \mapsto f(z,x) \in L_1(X)$.
\item p.p. en $x \in X$, $z \mapsto f(z,x)$ est holomorphe dans $\Omega$. On notera $\frac{\partial f}{\partial z}$ cette dérivée définie presque partout.
\item $\forall K \subseteq \Omega$ compact, $\exists g_K \in L_1(X)$ positive telle que
\[ \left| \frac{\partial f}{\partial z}(x,z) \right| \leq g_K(x) \quad \forall z \in \Omega, \text{p.p. en } x \]
\[ \left| f(x,z) \right| \leq g_K(x) \quad \forall z \in K, \text{p.p. en } x \]
\end{enumerate}
Alors $F$ est holomorphe dans $\Omega$ avec
\[ \forall z \in \Omega, \, F'(z) = \int_X \frac{\partial f}{\partial z}(z, t) \, \mathrm{d}\mu(z) \]
Expand Down

0 comments on commit 1bac5eb

Please sign in to comment.