-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrod_rod_contact_parallel_validation.py
180 lines (150 loc) · 4.39 KB
/
rod_rod_contact_parallel_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
import elastica as ea
from post_processing_parallel import (
plot_video_with_surface,
plot_velocity,
)
class ParallelRodRodContact(
ea.BaseSystemCollection,
ea.Constraints,
ea.Connections,
ea.Forcing,
ea.Damping,
ea.CallBacks,
):
pass
parallel_rod_rod_contact_sim = ParallelRodRodContact()
# Simulation parameters
dt = 5e-4
final_time = 10
total_steps = int(final_time / dt)
time_step = np.float64(final_time / total_steps)
rendering_fps = 20
step_skip = int(1.0 / (rendering_fps * time_step))
# Rod parameters
base_length = 0.5
base_radius = 0.01
base_area = np.pi * base_radius ** 2
density = 1750
nu = 0.0
E = 3e5
poisson_ratio = 0.5
shear_modulus = E / (poisson_ratio + 1.0)
# Rod orientations
start = np.zeros(
3,
)
inclination = np.deg2rad(0)
direction = np.array([0.0, np.cos(inclination), np.sin(inclination)])
normal = np.array([0.0, -np.sin(inclination), np.cos(inclination)])
# Rod 1
n_elem_rod_one = 50
start_rod_one = start + normal * 0.2
rod_one = ea.CosseratRod.straight_rod(
n_elem_rod_one,
start_rod_one,
direction,
normal,
base_length,
base_radius,
density,
youngs_modulus=E,
shear_modulus=shear_modulus,
)
rod_one.velocity_collection[:] += 0.05 * -normal.reshape(3, 1)
parallel_rod_rod_contact_sim.append(rod_one)
# Rod 2
n_elem_rod_two = 50
start_rod_two = start
rod_two = ea.CosseratRod.straight_rod(
n_elem_rod_two,
start_rod_two,
direction,
normal,
base_length,
base_radius,
density,
youngs_modulus=E,
shear_modulus=shear_modulus,
)
parallel_rod_rod_contact_sim.append(rod_two)
# Contact between two rods
parallel_rod_rod_contact_sim.connect(rod_one, rod_two).using(
ea.ExternalContact, k=1e3, nu=0.001
)
# add damping
damping_constant = 2e-4
parallel_rod_rod_contact_sim.dampen(rod_one).using(
ea.AnalyticalLinearDamper,
damping_constant=damping_constant,
time_step=dt,
)
parallel_rod_rod_contact_sim.dampen(rod_two).using(
ea.AnalyticalLinearDamper,
damping_constant=damping_constant,
time_step=dt,
)
# Add call backs
class RodCallBack(ea.CallBackBaseClass):
""" """
def __init__(self, step_skip: int, callback_params: dict):
ea.CallBackBaseClass.__init__(self)
self.every = step_skip
self.callback_params = callback_params
def make_callback(self, system, time, current_step: int):
if current_step % self.every == 0:
self.callback_params["time"].append(time)
self.callback_params["step"].append(current_step)
self.callback_params["position"].append(system.position_collection.copy())
self.callback_params["radius"].append(system.radius.copy())
self.callback_params["com"].append(system.compute_position_center_of_mass())
self.callback_params["com_velocity"].append(
system.compute_velocity_center_of_mass()
)
total_energy = (
system.compute_translational_energy()
+ system.compute_rotational_energy()
+ system.compute_bending_energy()
+ system.compute_shear_energy()
)
self.callback_params["total_energy"].append(total_energy)
return
post_processing_dict_rod1 = ea.defaultdict(
list
) # list which collected data will be append
# set the diagnostics for rod and collect data
parallel_rod_rod_contact_sim.collect_diagnostics(rod_one).using(
RodCallBack,
step_skip=step_skip,
callback_params=post_processing_dict_rod1,
)
post_processing_dict_rod2 = ea.defaultdict(
list
) # list which collected data will be append
# set the diagnostics for rod and collect data
parallel_rod_rod_contact_sim.collect_diagnostics(rod_two).using(
RodCallBack,
step_skip=step_skip,
callback_params=post_processing_dict_rod2,
)
parallel_rod_rod_contact_sim.finalize()
# Do the simulation
timestepper = ea.PositionVerlet()
ea.integrate(timestepper, parallel_rod_rod_contact_sim, final_time, total_steps)
# plotting the videos
filename_video = "parallel_rods_contact.mp4"
plot_video_with_surface(
[post_processing_dict_rod1, post_processing_dict_rod2],
video_name=filename_video,
fps=rendering_fps,
step=1,
vis3D=True,
vis2D=True,
)
filaname = "parallel_rods_velocity.png"
plot_velocity(
post_processing_dict_rod1,
post_processing_dict_rod2,
filename=filaname,
SAVE_FIGURE=True,
)