Skip to content

Sunil260/CNN-Face-Emotion-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 

Repository files navigation

Face-Emotional-Analysis

The goal of this project is to use a CNN model to analyze live video input of multiple facial expressions and create a generealization of mood among people. Once a consensus is made a playlist with metadata matching the expression/mood will play.

Newer implementation with a deeper network, data augmentation and learning rate schedule. Current itteration:

#First layer to normalize the RGB chanels model.add(layers.Rescaling(1./255))

model.add(data_augmentation)

#4 layer stack for convlutional block

model.add(layers.Conv2D(64, 3, padding='same',activation='relu')) model.add(layers.MaxPooling2D())

model.add(layers.Conv2D(128, 3, padding='same',activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv2D(128, 3, padding='same',activation='relu')) model.add(layers.MaxPooling2D()) model.add(layers.Dropout(0.20))

model.add(layers.Conv2D(256, 3, padding='same',activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D()) model.add(layers.Dropout(0.20))

model.add(layers.Conv2D(512, 3, padding='same',activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D()) model.add(layers.Dropout(0.20))

#Flatten for dense layer model.add(layers.Flatten()) model.add(layers.BatchNormalization()) model.add(layers.Dropout(.20, input_shape=(3,))) model.add(layers.Dense(128, activation='relu')) model.add(layers.Dropout(.20)) model.add(layers.Dense(num_classes,activation = 'softmax'))

Screen Shot 2023-05-15 at 10 38 08 AM

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published