-
Notifications
You must be signed in to change notification settings - Fork 25
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0a56c98
commit 804edc1
Showing
486 changed files
with
97,497 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,248 @@ | ||
<!--- | ||
Copyright 2022 - The HuggingFace Team. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
--> | ||
|
||
<p align="center"> | ||
<br> | ||
<img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/en/imgs/diffusers_library.jpg" width="400"/> | ||
<br> | ||
<p> | ||
<p align="center"> | ||
<a href="https://github.com/huggingface/diffusers/blob/main/LICENSE"> | ||
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue"> | ||
</a> | ||
<a href="https://github.com/huggingface/diffusers/releases"> | ||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg"> | ||
</a> | ||
<a href="https://pepy.tech/project/diffusers"> | ||
<img alt="GitHub release" src="https://static.pepy.tech/badge/diffusers/month"> | ||
</a> | ||
<a href="CODE_OF_CONDUCT.md"> | ||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg"> | ||
</a> | ||
<a href="https://twitter.com/diffuserslib"> | ||
<img alt="X account" src="https://img.shields.io/twitter/url/https/twitter.com/diffuserslib.svg?style=social&label=Follow%20%40diffuserslib"> | ||
</a> | ||
</p> | ||
|
||
🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](https://huggingface.co/docs/diffusers/conceptual/philosophy#usability-over-performance), [simple over easy](https://huggingface.co/docs/diffusers/conceptual/philosophy#simple-over-easy), and [customizability over abstractions](https://huggingface.co/docs/diffusers/conceptual/philosophy#tweakable-contributorfriendly-over-abstraction). | ||
|
||
🤗 Diffusers offers three core components: | ||
|
||
- State-of-the-art [diffusion pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) that can be run in inference with just a few lines of code. | ||
- Interchangeable noise [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview) for different diffusion speeds and output quality. | ||
- Pretrained [models](https://huggingface.co/docs/diffusers/api/models/overview) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems. | ||
|
||
## Installation | ||
|
||
We recommend installing 🤗 Diffusers in a virtual environment from PyPI or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/#installation), please refer to their official documentation. | ||
|
||
### PyTorch | ||
|
||
With `pip` (official package): | ||
|
||
```bash | ||
pip install --upgrade diffusers[torch] | ||
``` | ||
|
||
With `conda` (maintained by the community): | ||
|
||
```sh | ||
conda install -c conda-forge diffusers | ||
``` | ||
|
||
### Flax | ||
|
||
With `pip` (official package): | ||
|
||
```bash | ||
pip install --upgrade diffusers[flax] | ||
``` | ||
|
||
### Apple Silicon (M1/M2) support | ||
|
||
Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggingface.co/docs/diffusers/optimization/mps) guide. | ||
|
||
## Quickstart | ||
|
||
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 19000+ checkpoints): | ||
|
||
```python | ||
from diffusers import DiffusionPipeline | ||
import torch | ||
|
||
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) | ||
pipeline.to("cuda") | ||
pipeline("An image of a squirrel in Picasso style").images[0] | ||
``` | ||
|
||
You can also dig into the models and schedulers toolbox to build your own diffusion system: | ||
|
||
```python | ||
from diffusers import DDPMScheduler, UNet2DModel | ||
from PIL import Image | ||
import torch | ||
|
||
scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256") | ||
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda") | ||
scheduler.set_timesteps(50) | ||
|
||
sample_size = model.config.sample_size | ||
noise = torch.randn((1, 3, sample_size, sample_size), device="cuda") | ||
input = noise | ||
|
||
for t in scheduler.timesteps: | ||
with torch.no_grad(): | ||
noisy_residual = model(input, t).sample | ||
prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample | ||
input = prev_noisy_sample | ||
|
||
image = (input / 2 + 0.5).clamp(0, 1) | ||
image = image.cpu().permute(0, 2, 3, 1).numpy()[0] | ||
image = Image.fromarray((image * 255).round().astype("uint8")) | ||
image | ||
``` | ||
|
||
Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to launch your diffusion journey today! | ||
|
||
## How to navigate the documentation | ||
|
||
| **Documentation** | **What can I learn?** | | ||
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ||
| [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview) | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. | | ||
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. | | ||
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. | | ||
| [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview) | Guides for how to optimize your diffusion model to run faster and consume less memory. | | ||
| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. | | ||
## Contribution | ||
|
||
We ❤️ contributions from the open-source community! | ||
If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md). | ||
You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library. | ||
- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute | ||
- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines | ||
- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) | ||
|
||
Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out ☕. | ||
|
||
|
||
## Popular Tasks & Pipelines | ||
|
||
<table> | ||
<tr> | ||
<th>Task</th> | ||
<th>Pipeline</th> | ||
<th>🤗 Hub</th> | ||
</tr> | ||
<tr style="border-top: 2px solid black"> | ||
<td>Unconditional Image Generation</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/ddpm"> DDPM </a></td> | ||
<td><a href="https://huggingface.co/google/ddpm-ema-church-256"> google/ddpm-ema-church-256 </a></td> | ||
</tr> | ||
<tr style="border-top: 2px solid black"> | ||
<td>Text-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td> | ||
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td> | ||
</tr> | ||
<tr> | ||
<td>Text-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/unclip">unCLIP</a></td> | ||
<td><a href="https://huggingface.co/kakaobrain/karlo-v1-alpha"> kakaobrain/karlo-v1-alpha </a></td> | ||
</tr> | ||
<tr> | ||
<td>Text-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/deepfloyd_if">DeepFloyd IF</a></td> | ||
<td><a href="https://huggingface.co/DeepFloyd/IF-I-XL-v1.0"> DeepFloyd/IF-I-XL-v1.0 </a></td> | ||
</tr> | ||
<tr> | ||
<td>Text-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/kandinsky">Kandinsky</a></td> | ||
<td><a href="https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder"> kandinsky-community/kandinsky-2-2-decoder </a></td> | ||
</tr> | ||
<tr style="border-top: 2px solid black"> | ||
<td>Text-guided Image-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/controlnet">ControlNet</a></td> | ||
<td><a href="https://huggingface.co/lllyasviel/sd-controlnet-canny"> lllyasviel/sd-controlnet-canny </a></td> | ||
</tr> | ||
<tr> | ||
<td>Text-guided Image-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/pix2pix">InstructPix2Pix</a></td> | ||
<td><a href="https://huggingface.co/timbrooks/instruct-pix2pix"> timbrooks/instruct-pix2pix </a></td> | ||
</tr> | ||
<tr> | ||
<td>Text-guided Image-to-Image</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td> | ||
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td> | ||
</tr> | ||
<tr style="border-top: 2px solid black"> | ||
<td>Text-guided Image Inpainting</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpainting</a></td> | ||
<td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td> | ||
</tr> | ||
<tr style="border-top: 2px solid black"> | ||
<td>Image Variation</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/image_variation">Stable Diffusion Image Variation</a></td> | ||
<td><a href="https://huggingface.co/lambdalabs/sd-image-variations-diffusers"> lambdalabs/sd-image-variations-diffusers </a></td> | ||
</tr> | ||
<tr style="border-top: 2px solid black"> | ||
<td>Super Resolution</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/upscale">Stable Diffusion Upscale</a></td> | ||
<td><a href="https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler"> stabilityai/stable-diffusion-x4-upscaler </a></td> | ||
</tr> | ||
<tr> | ||
<td>Super Resolution</td> | ||
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/latent_upscale">Stable Diffusion Latent Upscale</a></td> | ||
<td><a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler"> stabilityai/sd-x2-latent-upscaler </a></td> | ||
</tr> | ||
</table> | ||
|
||
## Popular libraries using 🧨 Diffusers | ||
|
||
- https://github.com/microsoft/TaskMatrix | ||
- https://github.com/invoke-ai/InvokeAI | ||
- https://github.com/apple/ml-stable-diffusion | ||
- https://github.com/Sanster/lama-cleaner | ||
- https://github.com/IDEA-Research/Grounded-Segment-Anything | ||
- https://github.com/ashawkey/stable-dreamfusion | ||
- https://github.com/deep-floyd/IF | ||
- https://github.com/bentoml/BentoML | ||
- https://github.com/bmaltais/kohya_ss | ||
- +8000 other amazing GitHub repositories 💪 | ||
|
||
Thank you for using us ❤️. | ||
|
||
## Credits | ||
|
||
This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today: | ||
|
||
- @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion) | ||
- @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion) | ||
- @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim) | ||
- @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch) | ||
|
||
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights. | ||
|
||
## Citation | ||
|
||
```bibtex | ||
@misc{von-platen-etal-2022-diffusers, | ||
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Thomas Wolf}, | ||
title = {Diffusers: State-of-the-art diffusion models}, | ||
year = {2022}, | ||
publisher = {GitHub}, | ||
journal = {GitHub repository}, | ||
howpublished = {\url{https://github.com/huggingface/diffusers}} | ||
} | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
FROM ubuntu:20.04 | ||
LABEL maintainer="Hugging Face" | ||
LABEL repository="diffusers" | ||
|
||
ENV DEBIAN_FRONTEND=noninteractive | ||
|
||
RUN apt update && \ | ||
apt install -y bash \ | ||
build-essential \ | ||
git \ | ||
git-lfs \ | ||
curl \ | ||
ca-certificates \ | ||
libsndfile1-dev \ | ||
python3.8 \ | ||
python3-pip \ | ||
python3.8-venv && \ | ||
rm -rf /var/lib/apt/lists | ||
|
||
# make sure to use venv | ||
RUN python3 -m venv /opt/venv | ||
ENV PATH="/opt/venv/bin:$PATH" | ||
|
||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py) | ||
# follow the instructions here: https://cloud.google.com/tpu/docs/run-in-container#train_a_jax_model_in_a_docker_container | ||
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \ | ||
python3 -m uv pip install --upgrade --no-cache-dir \ | ||
clu \ | ||
"jax[cpu]>=0.2.16,!=0.3.2" \ | ||
"flax>=0.4.1" \ | ||
"jaxlib>=0.1.65" && \ | ||
python3 -m uv pip install --no-cache-dir \ | ||
accelerate \ | ||
datasets \ | ||
hf-doc-builder \ | ||
huggingface-hub \ | ||
Jinja2 \ | ||
librosa \ | ||
numpy \ | ||
scipy \ | ||
tensorboard \ | ||
transformers | ||
|
||
CMD ["/bin/bash"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
FROM ubuntu:20.04 | ||
LABEL maintainer="Hugging Face" | ||
LABEL repository="diffusers" | ||
|
||
ENV DEBIAN_FRONTEND=noninteractive | ||
|
||
RUN apt update && \ | ||
apt install -y bash \ | ||
build-essential \ | ||
git \ | ||
git-lfs \ | ||
curl \ | ||
ca-certificates \ | ||
libsndfile1-dev \ | ||
python3.8 \ | ||
python3-pip \ | ||
python3.8-venv && \ | ||
rm -rf /var/lib/apt/lists | ||
|
||
# make sure to use venv | ||
RUN python3 -m venv /opt/venv | ||
ENV PATH="/opt/venv/bin:$PATH" | ||
|
||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py) | ||
# follow the instructions here: https://cloud.google.com/tpu/docs/run-in-container#train_a_jax_model_in_a_docker_container | ||
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \ | ||
python3 -m pip install --no-cache-dir \ | ||
"jax[tpu]>=0.2.16,!=0.3.2" \ | ||
-f https://storage.googleapis.com/jax-releases/libtpu_releases.html && \ | ||
python3 -m uv pip install --upgrade --no-cache-dir \ | ||
clu \ | ||
"flax>=0.4.1" \ | ||
"jaxlib>=0.1.65" && \ | ||
python3 -m uv pip install --no-cache-dir \ | ||
accelerate \ | ||
datasets \ | ||
hf-doc-builder \ | ||
huggingface-hub \ | ||
Jinja2 \ | ||
librosa \ | ||
numpy \ | ||
scipy \ | ||
tensorboard \ | ||
transformers | ||
|
||
CMD ["/bin/bash"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
FROM ubuntu:20.04 | ||
LABEL maintainer="Hugging Face" | ||
LABEL repository="diffusers" | ||
|
||
ENV DEBIAN_FRONTEND=noninteractive | ||
|
||
RUN apt update && \ | ||
apt install -y bash \ | ||
build-essential \ | ||
git \ | ||
git-lfs \ | ||
curl \ | ||
ca-certificates \ | ||
libsndfile1-dev \ | ||
python3.8 \ | ||
python3-pip \ | ||
python3.8-venv && \ | ||
rm -rf /var/lib/apt/lists | ||
|
||
# make sure to use venv | ||
RUN python3 -m venv /opt/venv | ||
ENV PATH="/opt/venv/bin:$PATH" | ||
|
||
# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py) | ||
RUN python3 -m pip install --no-cache-dir --upgrade pip uv==0.1.11 && \ | ||
python3 -m uv pip install --no-cache-dir \ | ||
torch==2.1.2 \ | ||
torchvision==0.16.2 \ | ||
torchaudio==2.1.2 \ | ||
onnxruntime \ | ||
--extra-index-url https://download.pytorch.org/whl/cpu && \ | ||
python3 -m uv pip install --no-cache-dir \ | ||
accelerate \ | ||
datasets \ | ||
hf-doc-builder \ | ||
huggingface-hub \ | ||
Jinja2 \ | ||
librosa \ | ||
numpy \ | ||
scipy \ | ||
tensorboard \ | ||
transformers | ||
|
||
CMD ["/bin/bash"] |
Oops, something went wrong.