Skip to content

TheCutestCat/MSTAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MSTAN

  • the data is from link
  • first of all, I train a model MSTAN, the paper is Multi-Source and Temporal Attention Network for Probabilistic Wind Power Prediction, but the result is not good at all..
  • then we trained the Seq2seq mdoel, very simple but it works very well..

Picture of the result

image

Detail for Seq2seq model

  • See the result at show_data.ipynb
  • 15min a point, use 48 data to predict the next 48 data
  • the feature that we use is just wind speed at 10 meters, wind direction at 10 meters , The rest of the data is not very impactful, but adding them will improve performance a bit
  • The result is quite good with a MSEr about 3.2 for a turbine capacity of 100MW
  • 对于概率预测,我觉得直接去预测概率模型的分布,是是不合理而且效果很不好的。最一开始我是用MSTAN去预测一个Beta分布的概率,最终结果非常不好
  • 一个比较好的概率预测可以这样的到:使用多个模型预测同样的结果得到一个序列[x1,x2,x3,x4...xn],然后对这个序列进行KDE(kernel density estimation)分析,得到的概率结果可能才会更可信一些。

About

Try to predict wind power

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published