Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merge 0.15.5 #894

Merged
merged 11 commits into from
Dec 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion _typos.toml
Original file line number Diff line number Diff line change
Expand Up @@ -12,4 +12,4 @@ NdArray="NdArray" # onnxruntime::session::NdArray
[default.extend-words]

[files]
extend-exclude = ["*.svg"]
extend-exclude = ["*.svg", "*.onnx"]
20 changes: 17 additions & 3 deletions crates/voicevox_core/src/infer.rs
Original file line number Diff line number Diff line change
Expand Up @@ -197,23 +197,33 @@ pub(crate) trait OutputScalar: Sized {
fn extract(tensor: OutputTensor) -> std::result::Result<ArrayD<Self>, ExtractError>;
}

impl OutputScalar for f32 {
const KIND: OutputScalarKind = OutputScalarKind::Float32;
#[duplicate_item(
T Kind;
[ i64 ] [ Int64 ];
[ f32 ] [ Float32 ];
)]
impl OutputScalar for T {
const KIND: OutputScalarKind = OutputScalarKind::Kind;

fn extract(tensor: OutputTensor) -> std::result::Result<ArrayD<Self>, ExtractError> {
match tensor {
OutputTensor::Float32(tensor) => Ok(tensor),
OutputTensor::Kind(tensor) => Ok(tensor),
_ => Err(ExtractError::Datatype),
}
}
}

#[derive(Clone, Copy, PartialEq, derive_more::Display)]
pub(crate) enum OutputScalarKind {
#[display("int64_t")]
Int64,

#[display("float")]
Float32,
}

pub(crate) enum OutputTensor {
Int64(ArrayD<i64>),
Float32(ArrayD<f32>),
}

Expand Down Expand Up @@ -246,8 +256,12 @@ pub(crate) struct InferenceSessionOptions {
pub(crate) device: DeviceSpec,
}

// TODO: `ShapeError`を直接扱い、データ型違いはパニックにすべきでは?
#[derive(Error, Debug)]
pub(crate) enum ExtractError {
#[error("wrong datatype")]
Datatype,

#[error(transparent)]
Shape(#[from] ShapeError),
}
Expand Down
103 changes: 81 additions & 22 deletions crates/voicevox_core/src/infer/domains.rs
Original file line number Diff line number Diff line change
@@ -1,75 +1,134 @@
mod frame_decode;
mod singing_teacher;
mod talk;

use educe::Educe;
use serde::{Deserialize, Deserializer};

pub(crate) use self::talk::{
GenerateFullIntermediateInput, GenerateFullIntermediateOutput, PredictDurationInput,
PredictDurationOutput, PredictIntonationInput, PredictIntonationOutput,
RenderAudioSegmentInput, RenderAudioSegmentOutput, TalkDomain, TalkOperation,
pub(crate) use self::{
frame_decode::{FrameDecodeDomain, FrameDecodeOperation, SfDecodeInput, SfDecodeOutput},
singing_teacher::{
PredictSingConsonantLengthInput, PredictSingConsonantLengthOutput, PredictSingF0Input,
PredictSingF0Output, PredictSingVolumeInput, PredictSingVolumeOutput, SingingTeacherDomain,
SingingTeacherOperation,
},
talk::{
GenerateFullIntermediateInput, GenerateFullIntermediateOutput, PredictDurationInput,
PredictDurationOutput, PredictIntonationInput, PredictIntonationOutput,
RenderAudioSegmentInput, RenderAudioSegmentOutput, TalkDomain, TalkOperation,
},
};

#[derive(Educe)]
// TODO: `bounds`に`V: ?Sized`も入れようとすると、よくわからない理由で弾かれる。最新版のeduce
// でもそうなのか?また最新版でも駄目だとしたら、弾いている理由は何なのか?
#[educe(Clone(bound = "V: InferenceDomainMapValues, V::Talk: Clone"))]
#[educe(Clone(
bound = "V: InferenceDomainMapValues, V::Talk: Clone, V::SingingTeacher: Clone, V::FrameDecode: Clone"
))]
pub(crate) struct InferenceDomainMap<V: InferenceDomainMapValues + ?Sized> {
pub(crate) talk: V::Talk,
pub(crate) singing_teacher: V::SingingTeacher,
pub(crate) frame_decode: V::FrameDecode,
}

impl<T> InferenceDomainMap<(T,)> {
pub(crate) fn each_ref(&self) -> InferenceDomainMap<(&T,)> {
impl<T, S, F> InferenceDomainMap<(T, S, F)> {
pub(crate) fn each_ref(&self) -> InferenceDomainMap<(&T, &S, &F)> {
let talk = &self.talk;
InferenceDomainMap { talk }
let singing_teacher = &self.singing_teacher;
let frame_decode = &self.frame_decode;
InferenceDomainMap {
talk,
singing_teacher,
frame_decode,
}
}

pub(crate) fn map<T2, Ft: FnOnce(T) -> T2>(
pub(crate) fn map<T2, S2, F2, Ft: FnOnce(T) -> T2, Fs: FnOnce(S) -> S2, Ff: FnOnce(F) -> F2>(
self,
fs: InferenceDomainMap<(Ft,)>,
) -> InferenceDomainMap<(T2,)> {
fs: InferenceDomainMap<(Ft, Fs, Ff)>,
) -> InferenceDomainMap<(T2, S2, F2)> {
let talk = (fs.talk)(self.talk);
InferenceDomainMap { talk }
let singing_teacher = (fs.singing_teacher)(self.singing_teacher);
let frame_decode = (fs.frame_decode)(self.frame_decode);
InferenceDomainMap {
talk,
singing_teacher,
frame_decode,
}
}
}

impl<T, E> InferenceDomainMap<(Result<T, E>,)> {
pub(crate) fn collect(self) -> Result<InferenceDomainMap<(T,)>, E> {
impl<T, S, F, E> InferenceDomainMap<(Result<T, E>, Result<S, E>, Result<F, E>)> {
pub(crate) fn collect(self) -> Result<InferenceDomainMap<(T, S, F)>, E> {
let talk = self.talk?;
Ok(InferenceDomainMap { talk })
let singing_teacher = self.singing_teacher?;
let frame_decode = self.frame_decode?;
Ok(InferenceDomainMap {
talk,
singing_teacher,
frame_decode,
})
}
}

impl<'de, V: InferenceDomainMapValues + ?Sized> Deserialize<'de> for InferenceDomainMap<V>
where
V::Talk: Deserialize<'de>,
V::SingingTeacher: Deserialize<'de>,
V::FrameDecode: Deserialize<'de>,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
let Repr { talk } = Repr::deserialize(deserializer)?;
return Ok(Self { talk });
let Repr {
talk,
singing_teacher,
frame_decode,
} = Repr::deserialize(deserializer)?;
return Ok(Self {
talk,
singing_teacher,
frame_decode,
});

#[derive(Deserialize)]
struct Repr<T> {
struct Repr<T, S, F> {
talk: T,
singing_teacher: S,
frame_decode: F,
}
}
}

pub(crate) trait InferenceDomainMapValues {
type Talk;
type SingingTeacher;
type FrameDecode;
}

impl<T> InferenceDomainMapValues for (T,) {
impl<T, S, F> InferenceDomainMapValues for (T, S, F) {
type Talk = T;
type SingingTeacher = S;
type FrameDecode = F;
}

macro_rules! inference_domain_map_values {
(for<$arg:ident> $body:ty) => {
(::macros::substitute_type!(
$body where $arg = crate::infer::domains::TalkDomain as crate::infer::InferenceDomain
),)
(
::macros::substitute_type!(
$body
where $arg = crate::infer::domains::TalkDomain as crate::infer::InferenceDomain
),
::macros::substitute_type!(
$body
where $arg = crate::infer::domains::SingingTeacherDomain as crate::infer::InferenceDomain
),
::macros::substitute_type!(
$body
where $arg = crate::infer::domains::FrameDecodeDomain as crate::infer::InferenceDomain
),
)
};
}
pub(crate) use inference_domain_map_values;
52 changes: 52 additions & 0 deletions crates/voicevox_core/src/infer/domains/frame_decode.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
use std::{collections::BTreeSet, sync::LazyLock};

use enum_map::Enum;
use macros::{InferenceInputSignature, InferenceOperation, InferenceOutputSignature};
use ndarray::{Array1, Array2};

use crate::{manifest::FrameDecodeManifest, StyleType};

use super::super::{
InferenceDomain, InferenceInputSignature as _, InferenceOutputSignature as _, OutputTensor,
};

pub(crate) enum FrameDecodeDomain {}

impl InferenceDomain for FrameDecodeDomain {
type Operation = FrameDecodeOperation;
type Manifest = FrameDecodeManifest;

fn style_types() -> &'static BTreeSet<StyleType> {
static STYLE_TYPES: LazyLock<BTreeSet<StyleType>> =
LazyLock::new(|| [StyleType::FrameDecode, StyleType::Sing].into());
&STYLE_TYPES
}
}

#[derive(Clone, Copy, Enum, InferenceOperation)]
#[inference_operation(
type Domain = FrameDecodeDomain;
)]
pub(crate) enum FrameDecodeOperation {
#[inference_operation(
type Input = SfDecodeInput;
type Output = SfDecodeOutput;
)]
SfDecode,
}

#[derive(InferenceInputSignature)]
#[inference_input_signature(
type Signature = SfDecode;
)]
pub(crate) struct SfDecodeInput {
pub(crate) frame_phonemes: Array2<i64>,
pub(crate) frame_f0s: Array2<f32>,
pub(crate) frame_volumes: Array2<f32>,
pub(crate) speaker_id: Array1<i64>,
}

#[derive(InferenceOutputSignature)]
pub(crate) struct SfDecodeOutput {
pub(crate) wav: Array2<f32>,
}
95 changes: 95 additions & 0 deletions crates/voicevox_core/src/infer/domains/singing_teacher.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
use std::{collections::BTreeSet, sync::LazyLock};

use enum_map::Enum;
use macros::{InferenceInputSignature, InferenceOperation, InferenceOutputSignature};
use ndarray::{Array1, Array2};

use crate::{manifest::SingingTeacherManifest, StyleType};

use super::super::{
InferenceDomain, InferenceInputSignature as _, InferenceOutputSignature as _, OutputTensor,
};

pub(crate) enum SingingTeacherDomain {}

impl InferenceDomain for SingingTeacherDomain {
type Operation = SingingTeacherOperation;
type Manifest = SingingTeacherManifest;

fn style_types() -> &'static BTreeSet<StyleType> {
static STYLE_TYPES: LazyLock<BTreeSet<StyleType>> =
LazyLock::new(|| [StyleType::SingingTeacher, StyleType::Sing].into());
&STYLE_TYPES
}
}

#[derive(Clone, Copy, Enum, InferenceOperation)]
#[inference_operation(
type Domain = SingingTeacherDomain;
)]
pub(crate) enum SingingTeacherOperation {
#[inference_operation(
type Input = PredictSingConsonantLengthInput;
type Output = PredictSingConsonantLengthOutput;
)]
PredictSingConsonantLength,

#[inference_operation(
type Input = PredictSingF0Input;
type Output = PredictSingF0Output;
)]
PredictSingF0,

#[inference_operation(
type Input = PredictSingVolumeInput;
type Output = PredictSingVolumeOutput;
)]
PredictSingVolume,
}

#[derive(InferenceInputSignature)]
#[inference_input_signature(
type Signature = PredictSingConsonantLength;
)]
pub(crate) struct PredictSingConsonantLengthInput {
pub(crate) consonants: Array2<i64>,
pub(crate) vowels: Array2<i64>,
pub(crate) note_durations: Array2<i64>,
pub(crate) speaker_id: Array1<i64>,
}

#[derive(InferenceOutputSignature)]
pub(crate) struct PredictSingConsonantLengthOutput {
pub(crate) consonant_lengths: Array2<i64>,
}

#[derive(InferenceInputSignature)]
#[inference_input_signature(
type Signature = PredictSingF0;
)]
pub(crate) struct PredictSingF0Input {
pub(crate) phonemes: Array2<i64>,
pub(crate) notes: Array2<i64>,
pub(crate) speaker_id: Array1<i64>,
}

#[derive(InferenceOutputSignature)]
pub(crate) struct PredictSingF0Output {
pub(crate) f0s: Array2<f32>,
}

#[derive(InferenceInputSignature)]
#[inference_input_signature(
type Signature = PredictSingVolume;
)]
pub(crate) struct PredictSingVolumeInput {
pub(crate) phonemes: Array2<i64>,
pub(crate) notes: Array2<i64>,
pub(crate) frame_f0s: Array2<f32>,
pub(crate) speaker_id: Array1<i64>,
}

#[derive(InferenceOutputSignature)]
pub(crate) struct PredictSingVolumeOutput {
pub(crate) volumes: Array2<f32>,
}
6 changes: 5 additions & 1 deletion crates/voicevox_core/src/infer/runtimes/onnxruntime.rs
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ impl InferenceRuntime for self::blocking::Onnxruntime {
TensorElementType::Uint16 => Err("ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT16"),
TensorElementType::Int16 => Err("ONNX_TENSOR_ELEMENT_DATA_TYPE_INT16"),
TensorElementType::Int32 => Err("ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32"),
TensorElementType::Int64 => Err("ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64"),
TensorElementType::Int64 => Ok(OutputScalarKind::Int64),
TensorElementType::String => Err("ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING"),
TensorElementType::Bfloat16 => Err("ONNX_TENSOR_ELEMENT_DATA_TYPE_BFLOAT16"),
TensorElementType::Float16 => Err("ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16"),
Expand Down Expand Up @@ -253,6 +253,10 @@ fn extract_outputs(outputs: &ort::SessionOutputs<'_, '_>) -> anyhow::Result<Vec<
};

match ty {
TensorElementType::Int64 => {
let output = output.try_extract_tensor::<i64>()?;
Ok(OutputTensor::Int64(output.into_owned()))
}
TensorElementType::Float32 => {
let output = output.try_extract_tensor::<f32>()?;
Ok(OutputTensor::Float32(output.into_owned()))
Expand Down
Loading
Loading