-
Notifications
You must be signed in to change notification settings - Fork 25
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
222 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .model import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
import tensorflow as tf | ||
import numpy as np | ||
|
||
# Build a class for model | ||
class Model(): | ||
def __init__(self): | ||
pass | ||
|
||
def new_conv_layer(self, bottom, filter_shape, activation=tf.identity, padding='SAME', stride=1, name=None ): | ||
with tf.variable_scope(name): | ||
w = tf.get_variable( | ||
"W", | ||
shape=filter_shape, | ||
initializer=tf.random_normal_initializer(0., 0.005)) | ||
b = tf.get_variable( | ||
"b", | ||
shape=filter_shape[-1], | ||
initializer=tf.constant_initializer(0.)) | ||
|
||
conv = tf.nn.conv2d( bottom, w, [1,stride,stride,1], padding=padding) | ||
bias = activation(tf.nn.bias_add(conv, b)) | ||
|
||
return bias #relu | ||
|
||
def new_deconv_layer(self, bottom, filter_shape, output_shape, activation=tf.identity, padding='SAME', stride=1, name=None): | ||
with tf.variable_scope(name): | ||
W = tf.get_variable( | ||
"W", | ||
shape=filter_shape, | ||
initializer=tf.random_normal_initializer(0., 0.005)) | ||
b = tf.get_variable( | ||
"b", | ||
shape=filter_shape[-2], | ||
initializer=tf.constant_initializer(0.)) | ||
deconv = tf.nn.conv2d_transpose( bottom, W, output_shape, [1,stride,stride,1], padding=padding) | ||
bias = activation(tf.nn.bias_add(deconv, b)) | ||
|
||
return bias | ||
|
||
def new_fc_layer( self, bottom, output_size, name ): | ||
shape = bottom.get_shape().as_list() | ||
dim = np.prod( shape[1:] ) | ||
x = tf.reshape( bottom, [-1, dim]) | ||
input_size = dim | ||
|
||
with tf.variable_scope(name): | ||
w = tf.get_variable( | ||
"W", | ||
shape=[input_size, output_size], | ||
initializer=tf.random_normal_initializer(0., 0.005)) | ||
b = tf.get_variable( | ||
"b", | ||
shape=[output_size], | ||
initializer=tf.constant_initializer(0.)) | ||
fc = tf.nn.bias_add( tf.matmul(x, w), b) | ||
|
||
return fc | ||
|
||
def channel_wise_fc_layer(self, input, name): # bottom: (7x7x512) | ||
_, width, height, n_feat_map = input.get_shape().as_list() | ||
input_reshape = tf.reshape( input, [-1, width*height, n_feat_map] ) | ||
input_transpose = tf.transpose( input_reshape, [2,0,1] ) | ||
|
||
with tf.variable_scope(name): | ||
W = tf.get_variable( | ||
"W", | ||
shape=[n_feat_map,width*height, width*height], # (512,49,49) | ||
initializer=tf.random_normal_initializer(0., 0.005)) | ||
output = tf.batch_matmul(input_transpose, W) | ||
|
||
output_transpose = tf.transpose(output, [1,2,0]) | ||
output_reshape = tf.reshape( output_transpose, [-1, height, width, n_feat_map] ) | ||
|
||
return output_reshape | ||
|
||
def leaky_relu(self, bottom, leak=0.1): | ||
return tf.maximum(leak*bottom, bottom) | ||
|
||
def batchnorm(self, bottom, is_train, epsilon=1e-8, name=None): | ||
bottom = tf.clip_by_value( bottom, -100., 100.) | ||
depth = bottom.get_shape().as_list()[-1] | ||
|
||
with tf.variable_scope(name): | ||
|
||
gamma = tf.get_variable("gamma", [depth], initializer=tf.constant_initializer(1.)) | ||
beta = tf.get_variable("beta" , [depth], initializer=tf.constant_initializer(0.)) | ||
|
||
batch_mean, batch_var = tf.nn.moments(bottom, [0,1,2], name='moments') | ||
ema = tf.train.ExponentialMovingAverage(decay=0.5) | ||
|
||
|
||
def update(): | ||
with tf.control_dependencies([ema_apply_op]): | ||
return tf.identity(batch_mean), tf.identity(batch_var) | ||
|
||
ema_apply_op = ema.apply([batch_mean, batch_var]) | ||
ema_mean, ema_var = ema.average(batch_mean), ema.average(batch_var) | ||
mean, var = tf.cond( | ||
is_train, | ||
update, | ||
lambda: (ema_mean, ema_var) ) | ||
|
||
normed = tf.nn.batch_norm_with_global_normalization(bottom, mean, var, beta, gamma, epsilon, False) | ||
return normed | ||
|
||
def resize_conv_layer(self, bottom, filter_shape, resize_scale=2, activation=tf.identity, padding='SAME', stride=1, name=None): | ||
width = bottom.get_shape().as_list()[1] | ||
height = bottom.get_shape().as_list()[2] | ||
|
||
bottom = tf.image.resize_nearest_neighbor(bottom, [width*resize_scale, height*resize_scale]) | ||
bias = self.new_conv_layer(bottom, filter_shape, stride=1, name=name ) | ||
return bias | ||
|
||
def build_reconstruction( self, images, is_train ): | ||
with tf.variable_scope('GEN'): | ||
|
||
# VGG 19 for Feature learning | ||
# 1. | ||
conv1_1 = self.new_conv_layer(images, [3,3,3,32], stride=1, name="conv1_1" ) | ||
#bn1_1 = tf.nn.relu(self.batchnorm(conv1_1, is_train, name='bn1_1')) | ||
conv1_1 = tf.nn.elu(conv1_1) | ||
conv1_2 = self.new_conv_layer(conv1_1, [3,3,32,32], stride=1, name="conv1_2" ) | ||
#bn1_2 = tf.nn.relu(self.batchnorm(conv1_2, is_train, name='bn1_2')) | ||
conv1_2 = tf.nn.elu(conv1_2) | ||
# Use stride convolution to replace max pooling (with padding to keep retain size 128->64) | ||
conv1_stride = self.new_conv_layer(conv1_2, [3,3,32,32], stride=2, name="conv1_stride") | ||
|
||
# 2. | ||
conv2_1 = self.new_conv_layer(conv1_stride, [3,3,32,64], stride=1, name="conv2_1" ) | ||
#bn2_1 = tf.nn.relu(self.batchnorm(conv2_1, is_train, name='bn2_1')) | ||
conv2_1 = tf.nn.elu(conv2_1) | ||
conv2_2 = self.new_conv_layer(conv2_1, [3,3,64, 64], stride=1, name="conv2_2" ) | ||
#bn2_2 = tf.nn.relu(self.batchnorm(conv2_2, is_train, name='bn2_2')) | ||
conv2_2 = tf.nn.elu(conv2_2) | ||
# Use stride convolution to replace max pooling (with padding to keep retain size 64->32) | ||
conv2_stride = self.new_conv_layer(conv2_2, [3,3,64,64], stride=2, name="conv2_stride") | ||
|
||
# 3. | ||
conv3_1 = self.new_conv_layer(conv2_stride, [3,3,64,128], stride=1, name="conv3_1" ) | ||
#bn3_1 = tf.nn.relu(self.batchnorm(conv3_1, is_train, name='bn3_1')) | ||
conv3_1 = tf.nn.elu(conv3_1) | ||
conv3_2 = self.new_conv_layer(conv3_1, [3,3,128, 128], stride=1, name="conv3_2" ) | ||
#bn3_2 = tf.nn.relu(self.batchnorm(conv3_2, is_train, name='bn3_2')) | ||
conv3_2 = tf.nn.elu(conv3_2) | ||
conv3_3 = self.new_conv_layer(conv3_2, [3,3,128,128], stride=1, name="conv3_3" ) | ||
#bn3_3 = tf.nn.relu(self.batchnorm(conv3_3, is_train, name='bn3_3')) | ||
conv3_3 = tf.nn.elu(conv3_3) | ||
conv3_4 = self.new_conv_layer(conv3_3, [3,3,128, 128], stride=1, name="conv3_4" ) | ||
#bn3_4 = tf.nn.relu(self.batchnorm(conv3_4, is_train, name='bn3_4')) | ||
conv3_4 = tf.nn.elu(conv3_4) | ||
# Use stride convolution to replace max pooling (with padding to keep retain size 32->16) | ||
conv3_stride = self.new_conv_layer(conv3_4, [3,3,128,128], stride=2, name="conv3_stride") # Final feature map (temporary) | ||
|
||
conv4_stride = self.new_conv_layer(conv3_stride, [3,3,128,128], stride=2, name="conv4_stride") # 16 -> 8 | ||
conv4_stride = tf.nn.elu(conv4_stride) | ||
|
||
conv5_stride = self.new_conv_layer(conv4_stride, [3,3,128,128], stride=2, name="conv5_stride") # 8 -> 4 | ||
conv5_stride = tf.nn.elu(conv5_stride) | ||
|
||
conv6_stride = self.new_conv_layer(conv5_stride, [3,3,128,128], stride=2, name="conv6_stride") # 4 -> 1 | ||
conv6_stride = tf.nn.elu(conv6_stride) | ||
|
||
# 6. | ||
deconv5_fs = self.new_deconv_layer( conv6_stride, [3,3,128,128], conv5_stride.get_shape().as_list(), stride=2, name="deconv5_fs") | ||
debn5_fs = tf.nn.elu(deconv5_fs) | ||
|
||
skip5 = tf.concat([debn5_fs, conv5_stride], 3) | ||
channels5 = skip5.get_shape().as_list()[3] | ||
|
||
# 5. | ||
deconv4_fs = self.new_deconv_layer( skip5, [3,3,128,channels5], conv4_stride.get_shape().as_list(), stride=2, name="deconv4_fs") | ||
debn4_fs = tf.nn.elu(deconv4_fs) | ||
|
||
skip4 = tf.concat([debn4_fs, conv4_stride], 3) | ||
channels4 = skip4.get_shape().as_list()[3] | ||
|
||
# 4. | ||
deconv3_fs = self.new_deconv_layer( skip4, [3,3,128,channels4], conv3_stride.get_shape().as_list(), stride=2, name="deconv3_fs") | ||
debn3_fs = tf.nn.elu(deconv3_fs) | ||
|
||
skip3 = tf.concat([debn3_fs, conv3_stride], 3) | ||
channels3 = skip3.get_shape().as_list()[3] | ||
|
||
# 3. | ||
deconv2_fs = self.new_deconv_layer( skip3, [3,3,64,channels3], conv2_stride.get_shape().as_list(), stride=2, name="deconv2_fs") | ||
debn2_fs = tf.nn.elu(deconv2_fs) | ||
|
||
skip2 = tf.concat([debn2_fs, conv2_stride], 3) | ||
channels2 = skip2.get_shape().as_list()[3] | ||
|
||
# 2. | ||
deconv1_fs = self.new_deconv_layer( skip2, [3,3,32,channels2], conv1_stride.get_shape().as_list(), stride=2, name="deconv1_fs") | ||
debn1_fs = tf.nn.elu(deconv1_fs) | ||
|
||
skip1 = tf.concat([debn1_fs, conv1_stride], 3) | ||
channels1 = skip1.get_shape().as_list()[3] | ||
|
||
# 1. | ||
recon = self.new_deconv_layer( skip1, [3,3,3,channels1], images.get_shape().as_list(), stride=2, name="recon") | ||
return recon | ||
|
||
def build_adversarial(self, images, is_train, reuse=None): | ||
with tf.variable_scope('DIS', reuse=reuse): | ||
|
||
conv1 = self.new_conv_layer(images, [4,4,3,64], stride=2, name="conv1" ) | ||
bn1 = self.leaky_relu(self.batchnorm(conv1, is_train, name='bn1')) | ||
#bn1 = tf.nn.elu(conv1) | ||
conv2 = self.new_conv_layer(bn1, [4,4,64,128], stride=2, name="conv2") | ||
bn2 = self.leaky_relu(self.batchnorm(conv2, is_train, name='bn2')) | ||
#bn2 = tf.nn.elu(conv2) | ||
conv3 = self.new_conv_layer(bn2, [4,4,128,256], stride=2, name="conv3") | ||
bn3 = self.leaky_relu(self.batchnorm(conv3, is_train, name='bn3')) | ||
#bn3 = tf.nn.elu(conv3) | ||
conv4 = self.new_conv_layer(bn3, [4,4,256,512], stride=2, name="conv4") | ||
bn4 = self.leaky_relu(self.batchnorm(conv4, is_train, name='bn4')) | ||
#bn4 = tf.nn.elu(conv4) | ||
|
||
|
||
output = self.new_fc_layer( bn4, output_size=1, name='output') | ||
|
||
return output[:,0] |