The official repository for the code and experiments used in the work:
Huang, Han, et al. "Bridging mean-field games and normalizing flows with trajectory regularization." Journal of Computational Physics 487 (2023): 112155. [arXiv]
We transform a gaussian distribution to a gaussian mixture via the learned geodesics.
2D | 10D | 50D | 100D |
---|---|---|---|
We wish to transport the top distribution to the bottom location while avoiding an obstacle located in the middle.
2D | 10D | 50D | 100D |
---|---|---|---|
10D, with various obstacle avoidance behaviors:
Weak Avoidance | Moderate Avoidance | Strong Avoidance |
---|---|---|
The idea is to think of each density as a group of drones, which seek to arrive at their desired destination with minimal transport cost while avoiding collisions with other groups/obstacles.
No Avoidance | Moderate Avoidance | Strong Avoidance |
---|---|---|
Our approach can also model scenarios with multiple groups as well as obstacles.
No Avoidance | Moderate Avoidance | Strong Avoidance |
---|---|---|
No Avoidance | Moderate Avoidance | Strong Avoidance |
---|---|---|
Top: NF trained without transport cost; bottom: same NF, trained with transport cost.
Demo for the movable joints on the robot arm:
Moving the robot arm from a higher initial position to a terminal position that is just above the table.
Moving the robot arm from an initial position that is below the table, to a terminal position that is just above the cup on the table, while avoiding the table itself.
The implementation of Neural Spline Flow (NSF) as well as the associated density experiments are adapted from the original repository: https://github.com/bayesiains/nsf
Tested with Python 3.6 and PyTorch 1.6
Data for density-estimation experiments is available at https://zenodo.org/record/1161203#.Wmtf_XVl8eN.
One can run the expriments shown in the paper by calling python mfg.py
with different arguments. Each run creates a directory at ./results/<dataset name>/<experiment name>
to store all the relevant information for plotting, etc.
To run the experiment in 100D, do:
python mfg.py --exp_name 100D --linear_transform_type lu_no_perm --reg_OT_dir gen --num_training_steps 100000 --base_transform_type rq-coupling --tail_bound 5 --OT_part block_CL_no_perm --lbd_OT 2e-1 --gaussian_multi_dim 100 --num_train_data 5000000 --LU_last false --NF_loss jeffery --lr_schedule adaptive --train_batch_size 2048 --learning_rate 1e-3
The same experiment in a different dimension can be done with the same setting, only changing --gaussian_dim
from 100 to the desired one.
- Note: the model converges faster in lower dimensions, e.g., 2D takes about 20k iterations.
To run the experiment in 100D, do:
python mfg.py --exp_name 100D --disc_scheme FD4_simp --reg_OT_dir gen --linear_transform_type lu_no_perm --LU_last false --NF_loss jeffery --lr_schedule adaptive --dataset_name crowd_motion_gaussian --num_training_steps 100000 --base_transform_type rq-coupling --gaussian_multi_dim 100 --num_train_data 10000000 --OT_part block_CL_no_perm --lbd_OT 1e-1 --lbd_F 2e-1 --train_batch_size 2048 --learning_rate 1e-3 --tail_bound 5
The same experiment in a different dimension can be done with the same setting, only changing --gaussian_dim
from 100 to the desired one. Again, the model converges faster in lower dimensions so one could use a smaller --num_training_steps
.
One can experiment with different weights on the MFG costs (--lbd_OT, --lbd_F
) and observe how the learned trajectory changes. For example, a bigger --lbd_F
incentivizes the agents to avoid the obstacles more.
To run the 2D experiment with strong avoidance behavior, do:
python multi_mfg.py --exp_name strong_avoid --reg_OT_dir gen --linear_transform_type lu_no_perm --dataset_name drones_22 --num_training_steps 50000 --base_transform_type rq-coupling --gaussian_multi_dim 2 --OT_part block_CL_no_perm --lbd_OT 2e-1 --lbd_F 5e0 --LU_last false --train_batch_size 256 --tail_bound 3 --num_flow_steps 10 --num_train_data 100000 --disc_scheme FD4_simp --NF_loss jeffery --lr_schedule adaptive
To run the 3D experiment with strong avoidance behavior, do:
python multi_mfg.py --exp_name strong_avoid --reg_OT_dir gen --linear_transform_type lu_no_perm --dataset_name drones_23 --num_training_steps 50000 --base_transform_type rq-coupling --gaussian_multi_dim 2 --OT_part block_CL_no_perm --lbd_OT 2e-1 --lbd_F 5e0 --LU_last false --train_batch_size 256 --tail_bound 3 --num_flow_steps 10 --num_train_data 200000 --disc_scheme FD4_simp --NF_loss jeffery --lr_schedule adaptive
For other levels of avoidance behavior in both 2D and 3D, change --lbd_F
.
To run the experiment with strong avoidance behavior, do:
python multi_mfg.py --exp_name strong_avoid --radius_82 2 --var_drones 5e-3 --reg_OT_dir gen --linear_transform_type lu_no_perm --dataset_name drones_82 --num_training_steps 50000 --base_transform_type rq-coupling --OT_part block_CL_no_perm --lbd_OT 2e-1 --lbd_F 3e0 --LU_last false --train_batch_size 512 --tail_bound 3 --num_flow_steps 10 --num_train_data 200000 --disc_scheme FD4_simp --lr_schedule adaptive --learning_rate 5e-4 --NF_loss jeffery
For other levels of avoidance behavior, change --lbd_F
.
This experiment is pretty slow. It may be possible to use parallel training to speed up the code. Currently, each population is parametrized as a flow, and the forward procedure simply loops through all the flows.
Run:
python multi_mfg.py --exp_name default --reg_OT_dir gen --linear_transform_type lu_no_perm --obs_mean_x_22 2.0 --dataset_name drones_22_obs --num_training_steps 50000 --base_transform_type rq-coupling --gaussian_multi_dim 2 --OT_part block_CL_no_perm --lbd_OT 2e-1 --lbd_F 1e0 --lbd_F_inter 2e0 --lbd_F_obs 2e1 --LU_last false --train_batch_size 256 --tail_bound 3 --num_flow_steps 10 --num_train_data 100000 --disc_scheme FD4_simp --obs_var_y_22 0.03 --NF_loss jeffery --lr_schedule adaptive --obs_var_x_22 0.5
Two moons:
python mfg.py --exp_name OT=5e-2 --reg_OT_dir gen --linear_transform_type lu_no_perm --dataset_name moons --num_training_steps 20000 --base_transform_type rq-coupling --OT_part block_CL_no_perm --lbd_OT 5e-2 --LU_last false --train_batch_size 32 --tail_bound 5
Spirals:
python mfg.py --exp_name OT=2e-1 --linear_transform_type lu_no_perm --reg_OT_dir gen --num_training_steps 50000 --base_transform_type rq-coupling --tail_bound 5 --OT_part block_CL_no_perm --lbd_OT 2e-1 --num_train_data 10000 --LU_last false --NF_loss KL_sampling --lr_schedule cyclic --train_batch_size 32 --dataset_name 2spirals
Miniboone:
python mfg.py --exp_name OT=5e-3 --dataset_name miniboone --train_batch_size 128 --num_training_steps 200000 --learning_rate 3e-4 --num_flow_steps 10 --num_transform_blocks 1 --hidden_features 32 --num_bins 4 --dropout_probability 0.2 --base_transform_type rq-autoregressive --lbd_OT 5e-3 --reg_OT_dir norm
For the other four tabular sets, please refer to the hyperparameter settings used in the paper and change the args accordingly.