Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Moved DelayWrapper logic to Proxy #1085

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions src/brevitas/core/quant/int_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,6 @@ def __init__(
self.tensor_clamp_impl = tensor_clamp_impl
self.signed = signed
self.narrow_range = narrow_range
self.delay_wrapper = DelayWrapper(quant_delay_steps)
self.input_view_impl = input_view_impl

@brevitas.jit.script_method
Expand All @@ -87,7 +86,6 @@ def forward(self, scale: Tensor, zero_point: Tensor, bit_width: Tensor, x: Tenso
y_int = self.to_int(scale, zero_point, bit_width, x)
y = y_int - zero_point
y = y * scale
y = self.delay_wrapper(x, y)
return y


Expand Down
4 changes: 3 additions & 1 deletion src/brevitas/proxy/parameter_quant.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
from brevitas.quant_tensor import IntQuantTensor
from brevitas.quant_tensor import QuantTensor
from brevitas.utils.quant_utils import _CachedIO
from brevitas.utils.quant_utils import DelayWrapper
from brevitas.utils.torch_utils import compute_channel_view_shape

from .quant_proxy import QuantProxyFromInjector
Expand Down Expand Up @@ -94,6 +95,7 @@ def __init__(self, quant_layer: nn.Module, quant_injector: Injector) -> None:
self.cache_inference_quant_weight_metadata_only = False
self.cache_class = None # To be redefined by each class
self.quant_tensor_class = None # To be redefined by each class
self.delay_wrapper = DelayWrapper()

@property
def input_view_impl(self):
Expand Down Expand Up @@ -136,7 +138,7 @@ def forward(self, x: torch.Tensor) -> Union[Tensor, QuantTensor]:
else:
out = self.create_quant_tensor(out)
else:
out = self.tensor_quant(x)
out = self.delay_wrapper(self.tensor_quant)(x)
if is_dynamo_compiling():
out = out[0]
else:
Expand Down
7 changes: 6 additions & 1 deletion src/brevitas/proxy/runtime_quant.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from brevitas.quant_tensor import IntQuantTensor
from brevitas.quant_tensor import QuantTensor
from brevitas.utils.quant_utils import _CachedIO
from brevitas.utils.quant_utils import DelayWrapper

from .quant_proxy import QuantProxyFromInjector
from .quant_proxy import QuantProxyProtocol
Expand Down Expand Up @@ -90,6 +91,8 @@ def forward(self, x):

class ActQuantProxyFromInjectorBase(QuantProxyFromInjector, ActQuantProxyProtocol, ABC):

delay_wrapper: DelayWrapper

def __init__(self, quant_layer, quant_injector):
QuantProxyFromInjector.__init__(self, quant_layer, quant_injector)
ActQuantProxyProtocol.__init__(self)
Expand All @@ -98,6 +101,7 @@ def __init__(self, quant_layer, quant_injector):
self.cache_inference_quant_act = False
self.cache_quant_io_metadata_only = True
self.cache_class = None
self.delay_wrapper = DelayWrapper()

@property
def input_view_impl(self):
Expand Down Expand Up @@ -184,7 +188,8 @@ def forward(self, x: Union[Tensor, QuantTensor]) -> Union[Tensor, QuantTensor]:
y = self.apply_input_view(self.fused_activation_quant_proxy.activation_impl(y))
y = (y, None)
else:
y = self.fused_activation_quant_proxy(y)
y = self.delay_wrapper(self.fused_activation_quant_proxy)(y)

# If y is an empty QuantTensor, we need to check if this is a passthrough proxy,
# otherwise return a simple Tensor

Expand Down
39 changes: 39 additions & 0 deletions tests/brevitas/proxy/test_proxy.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,3 +80,42 @@ def test_dynamic_act_proxy(self):

model.act_quant.disable_quant = True
assert model.act_quant.bit_width() is None

def test_delay_wrapper_weight_proxy(self):
model = QuantLinear(10, 5, weight_quant=Int8WeightPerTensorFloat, quant_delay_steps=2)
# Initially quantization should be disabled
assert model.weight_quant.scale() is None
assert model.weight_quant.zero_point() is None
assert model.weight_quant.bit_width() is None

# After 1 step, still disabled
model.weight_quant.quant_delay_steps()
assert model.weight_quant.scale() is None
assert model.weight_quant.zero_point() is None
assert model.weight_quant.bit_width() is None

# After 2 steps, quantization should be enabled
model.weight_quant.quant_delay_steps()
assert model.weight_quant.scale() is not None
assert model.weight_quant.zero_point() is not None
assert model.weight_quant.bit_width() is not None

def test_delay_wrapper_act_proxy(self):
model = QuantReLU(quant_delay_steps=3)
# Initially quantization should be disabled
assert model.act_quant.scale() is None
assert model.act_quant.zero_point() is None
assert model.act_quant.bit_width() is None

# After 2 steps, still disabled
model.act_quant.quant_delay_steps()
model.act_quant.quant_delay_steps()
assert model.act_quant.scale() is None
assert model.act_quant.zero_point() is None
assert model.act_quant.bit_width() is None

# After 3 steps, quantization should be enabled
model.act_quant.quant_delay_steps()
assert model.act_quant.scale() is not None
assert model.act_quant.zero_point() is not None
assert model.act_quant.bit_width() is not None