All prompts are owned by LeetCode. To view the prompt, click the title link above.
First completed : June 30, 2024
Last updated : July 04, 2024
Related Topics : Union Find, Graph
Acceptance Rate : 71.098 %
We can generate MSTs using a simplified form of Prims where we prioritize Type-3 edges (edges that both Alice and Bob can traverse) over Type-1 and Type-2 edges. As long as we greedily take the shared branches first, making sure to not cause cycles, then we'll generate a MST that uses the most possible shared edges. Thus any remaining unused edges from the Type-1 and Type-2 traversals (Alice's and Bob's traversals) will be extra.
Instinct/Notes In essence double prims where yuo always select the type 3s if present and not redundant?
class Solution:
def maxNumEdgesToRemove(self, n: int, edges: List[List[int]]) -> int:
totalEdges = len(edges)
bothEdges = 0
aliceEdges = 0
bobEdges = 0
both = defaultdict(set)
alice = defaultdict(set)
bob = defaultdict(set)
for tp, a, b in edges :
match tp :
case 1 :
# These ifs avoid duplicates
aliceEdges += 1
alice[a].add(b)
alice[b].add(a)
case 2 :
bobEdges += 1
bob[a].add(b)
bob[b].add(a)
case 3 :
if a not in both or b not in both:
bothEdges += 1
both[a].add(b)
both[b].add(a)
if min(aliceEdges, bobEdges) + bothEdges < n - 1 :
return -1
def helper(both: dict, person: dict) -> Set[int] :
visited = set()
toVisit = [(True, 1)] # heap [isPerson, node]
while toVisit :
tp, node = heapq.heappop(toVisit)
if node in visited :
continue
visited.add(node)
if not tp :
self.randafksf += 1
for i in both[node] :
heapq.heappush(toVisit, (False, i))
for i in person[node] :
heapq.heappush(toVisit, (True, i))
return visited
self.randafksf = 0
outputAlice = helper(both, alice)
if len(outputAlice) != n :
return -1
outputBob = helper(both, bob)
if len(outputBob) != n :
return -1
# Note: |Edges| = |Nodes| - 1 in an MST
edgesNeeded = 2 * n - 2
edgesNeeded -= self.randafksf // 2
return totalEdges - edgesNeeded
class Solution:
def maxNumEdgesToRemove(self, n: int, edges: List[List[int]]) -> int:
totalEdges = len(edges)
bothEdges = 0
aliceEdges = 0
bobEdges = 0
both = defaultdict(set)
alice = defaultdict(set)
bob = defaultdict(set)
for tp, a, b in edges :
match tp :
case 1 :
# These ifs avoid duplicates
aliceEdges += 1
alice[a].add(b)
alice[b].add(a)
case 2 :
bobEdges += 1
bob[a].add(b)
bob[b].add(a)
case 3 :
if a not in both or b not in both:
bothEdges += 1
both[a].add(b)
both[b].add(a)
if min(aliceEdges, bobEdges) + bothEdges < n - 1 :
return -1
def helper(both: dict, person: dict) -> Set[int] :
visited = set()
toVisitPriority = [1]
toVisitSecondary = []
while toVisitPriority or toVisitSecondary :
curr = None
fromPriority = False
if toVisitPriority :
fromPriority = True
curr = toVisitPriority.pop()
else :
curr = toVisitSecondary.pop()
if curr in visited :
continue
if fromPriority :
self.randafksf += 1
visited.add(curr)
for i in both[curr] :
toVisitPriority.append(i)
for i in person[curr] :
toVisitSecondary.append(i)
return visited
self.randafksf = 0
outputAlice = helper(both, alice)
if len(outputAlice) != n :
return -1
outputBob = helper(both, bob)
if len(outputBob) != n :
return -1
# Note: |Edges| = |Nodes| - 1 in an MST
edgesNeeded = 2 * n - 2
edgesNeeded -= self.randafksf // 2
return totalEdges - edgesNeeded - 1