Skip to content

Latest commit

 

History

History
203 lines (164 loc) · 5.72 KB

_1570. Dot Product of Two Sparse Vectors.md

File metadata and controls

203 lines (164 loc) · 5.72 KB

All prompts are owned by LeetCode. To view the prompt, click the title link above.

Back to top


First completed : June 06, 2024

Last updated : July 01, 2024


Related Topics : Array, Hash Table, Two Pointers, Design

Acceptance Rate : 89.86 %


Solutions

Python

# Notably more efficient amortized & better space efficiency if highly sparse
# THIS IN EFFECT IS SIMILAR TO THE INDEX-PAIRS METHOD

class SparseVector:
    def __init__(self, nums: List[int]):
        self.nums = {}
        for i in range(len(nums)) :
            if nums[i] :
                self.nums[i] = nums[i]

    # Return the dotProduct of two sparse vectors
    def dotProduct(self, vec: 'SparseVector') -> int:
        output = 0
        
        selfIndicies = sorted(self.nums.keys())
        vecIndicies = sorted(vec.nums.keys())

        while selfIndicies and vecIndicies :
            if selfIndicies[-1] > vecIndicies[-1] :
                selfIndicies.pop()
            elif selfIndicies[-1] < vecIndicies[-1] :
                vecIndicies.pop()
            else :
                output += vec.nums[vecIndicies.pop()] * self.nums[selfIndicies.pop()]
        return output

# Your SparseVector object will be instantiated and called as such:
# v1 = SparseVector(nums1)
# v2 = SparseVector(nums2)
# ans = v1.dotProduct(v2)
# Similar to the previous v2 version but optimized after recognizing the lack of need for
# two independent sets

class SparseVector:
    def __init__(self, nums: List[int]):
        self.nums = {}
        for i in range(len(nums)) :
            if nums[i] :
                self.nums[i] = nums[i]

    # Return the dotProduct of two sparse vectors
    def dotProduct(self, vec: 'SparseVector') -> int:
        output = 0
        
        for i in self.nums.keys() :
            if i in vec.nums.keys() :
                output += vec.nums[i] * self.nums[i]
                
        return output

# Your SparseVector object will be instantiated and called as such:
# v1 = SparseVector(nums1)
# v2 = SparseVector(nums2)
# ans = v1.dotProduct(v2)
class SparseVector:
    def __init__(self, nums: List[int]):
        self.nums = nums

    # Return the dotProduct of two sparse vectors
    def dotProduct(self, vec: 'SparseVector') -> int:
        output = 0
        for i in range(len(self.nums)) :
            output += self.nums[i] * vec.nums[i]

        return output

# Your SparseVector object will be instantiated and called as such:
# v1 = SparseVector(nums1)
# v2 = SparseVector(nums2)
# ans = v1.dotProduct(v2)

Java

class SparseVector {
    
    private HashMap<Integer, Integer> vals = new HashMap<>();
    SparseVector(int[] nums) {
        for (int i = 0; i < nums.length; i++) {
            if (nums[i] != 0) {
                vals.put(i, nums[i]);
            }
        }
    }
    
	// Return the dotProduct of two sparse vectors
    public int dotProduct(SparseVector vec) {
        int output = 0;
        for (Integer i : vals.keySet()) {
            if (vec.vals.containsKey(i)) {
                output += vec.vals.get(i) * vals.get(i);
            }
        }
        return output;
    }
}

// Your SparseVector object will be instantiated and called as such:
// SparseVector v1 = new SparseVector(nums1);
// SparseVector v2 = new SparseVector(nums2);
// int ans = v1.dotProduct(v2);

C

typedef struct {
    int* nums;
    int numsSize;
} SparseVector;


SparseVector* sparseVectorCreate(int* nums, int numsSize) {
    
    // number of values to store
    int newNumSize = 0;
    for (int i = 0; i < numsSize; i++) {
        if (nums[i]) {
            newNumSize++;
        }
    }

    // storing the values
    SparseVector* data = malloc(sizeof(SparseVector));
    data->nums = (int*) malloc(sizeof(int) * newNumSize * 2);
    data->numsSize = newNumSize;
    
    for (int i = 0, currPointer = 0; i < numsSize; i++) {
        if (nums[i]) {
            data->nums[currPointer] = i;
            data->nums[currPointer + 1] = nums[i];
            currPointer += 2;
        }
    }

    return data;
}

// Return the dotProduct of two sparse vectors
int sparseVectordotProduct(SparseVector* obj, SparseVector* vec) {
    int output = 0;
    for (int i = 0, j = 0; i < 2 * obj->numsSize && j < 2 * vec->numsSize;) {
        if (obj->nums[i] < vec->nums[j]) {
            i += 2;
        } else if (obj->nums[i] > vec->nums[j]) {
            j += 2;
        } else {
            output += obj->nums[i + 1] * vec->nums[j + 1];
            i += 2;
            j += 2;
        }
    }

    return output;
}

/**
 * Your SparseVector struct will be instantiated and called as such:
 * SparseVector* v1 = sparseVectorCreate(nums1, nums1Size);
 * SparseVector* v2 = sparseVectorCreate(nums2, nums2Size);
 * int ans = sparseVectordotProduct(v1, v2);
*/