All prompts are owned by LeetCode. To view the prompt, click the title link above.
First completed : June 06, 2024
Last updated : July 01, 2024
Related Topics : Array, Hash Table, Two Pointers, Design
Acceptance Rate : 89.86 %
- m1570 v2 efficient storing.py
- m1570 v2-2 improved further and simplified.py
- m1570.py
- m1570 v2-2.java
- m1570 v2.c
# Notably more efficient amortized & better space efficiency if highly sparse
# THIS IN EFFECT IS SIMILAR TO THE INDEX-PAIRS METHOD
class SparseVector:
def __init__(self, nums: List[int]):
self.nums = {}
for i in range(len(nums)) :
if nums[i] :
self.nums[i] = nums[i]
# Return the dotProduct of two sparse vectors
def dotProduct(self, vec: 'SparseVector') -> int:
output = 0
selfIndicies = sorted(self.nums.keys())
vecIndicies = sorted(vec.nums.keys())
while selfIndicies and vecIndicies :
if selfIndicies[-1] > vecIndicies[-1] :
selfIndicies.pop()
elif selfIndicies[-1] < vecIndicies[-1] :
vecIndicies.pop()
else :
output += vec.nums[vecIndicies.pop()] * self.nums[selfIndicies.pop()]
return output
# Your SparseVector object will be instantiated and called as such:
# v1 = SparseVector(nums1)
# v2 = SparseVector(nums2)
# ans = v1.dotProduct(v2)
# Similar to the previous v2 version but optimized after recognizing the lack of need for
# two independent sets
class SparseVector:
def __init__(self, nums: List[int]):
self.nums = {}
for i in range(len(nums)) :
if nums[i] :
self.nums[i] = nums[i]
# Return the dotProduct of two sparse vectors
def dotProduct(self, vec: 'SparseVector') -> int:
output = 0
for i in self.nums.keys() :
if i in vec.nums.keys() :
output += vec.nums[i] * self.nums[i]
return output
# Your SparseVector object will be instantiated and called as such:
# v1 = SparseVector(nums1)
# v2 = SparseVector(nums2)
# ans = v1.dotProduct(v2)
class SparseVector:
def __init__(self, nums: List[int]):
self.nums = nums
# Return the dotProduct of two sparse vectors
def dotProduct(self, vec: 'SparseVector') -> int:
output = 0
for i in range(len(self.nums)) :
output += self.nums[i] * vec.nums[i]
return output
# Your SparseVector object will be instantiated and called as such:
# v1 = SparseVector(nums1)
# v2 = SparseVector(nums2)
# ans = v1.dotProduct(v2)
class SparseVector {
private HashMap<Integer, Integer> vals = new HashMap<>();
SparseVector(int[] nums) {
for (int i = 0; i < nums.length; i++) {
if (nums[i] != 0) {
vals.put(i, nums[i]);
}
}
}
// Return the dotProduct of two sparse vectors
public int dotProduct(SparseVector vec) {
int output = 0;
for (Integer i : vals.keySet()) {
if (vec.vals.containsKey(i)) {
output += vec.vals.get(i) * vals.get(i);
}
}
return output;
}
}
// Your SparseVector object will be instantiated and called as such:
// SparseVector v1 = new SparseVector(nums1);
// SparseVector v2 = new SparseVector(nums2);
// int ans = v1.dotProduct(v2);
typedef struct {
int* nums;
int numsSize;
} SparseVector;
SparseVector* sparseVectorCreate(int* nums, int numsSize) {
// number of values to store
int newNumSize = 0;
for (int i = 0; i < numsSize; i++) {
if (nums[i]) {
newNumSize++;
}
}
// storing the values
SparseVector* data = malloc(sizeof(SparseVector));
data->nums = (int*) malloc(sizeof(int) * newNumSize * 2);
data->numsSize = newNumSize;
for (int i = 0, currPointer = 0; i < numsSize; i++) {
if (nums[i]) {
data->nums[currPointer] = i;
data->nums[currPointer + 1] = nums[i];
currPointer += 2;
}
}
return data;
}
// Return the dotProduct of two sparse vectors
int sparseVectordotProduct(SparseVector* obj, SparseVector* vec) {
int output = 0;
for (int i = 0, j = 0; i < 2 * obj->numsSize && j < 2 * vec->numsSize;) {
if (obj->nums[i] < vec->nums[j]) {
i += 2;
} else if (obj->nums[i] > vec->nums[j]) {
j += 2;
} else {
output += obj->nums[i + 1] * vec->nums[j + 1];
i += 2;
j += 2;
}
}
return output;
}
/**
* Your SparseVector struct will be instantiated and called as such:
* SparseVector* v1 = sparseVectorCreate(nums1, nums1Size);
* SparseVector* v2 = sparseVectorCreate(nums2, nums2Size);
* int ans = sparseVectordotProduct(v1, v2);
*/