Skip to content

ZhouJiaHuan/yolo_deploy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

track_result

Introduction

This repository implemented the inference of yolo detectors with ONNXRuntime, MNN and TensorRT framework for fast deployment:

model Github ONNX MNN TensorRT
YOLOx https://github.com/Megvii-BaseDetection/YOLOX N Y N
YOLOx (mmdet 3.0) https://github.com/open-mmlab/mmdetection Y Y N
YOLOv6 https://github.com/meituan/YOLOv6 N Y Y
YOLOv8 https://github.com/ultralytics/ultralytics Y Y Y
YOLOv7-keypoints https://github.com/derronqi/yolov7-face Y N N
YOLOv8-keypoints https://github.com/ultralytics/ultralytics Y Y Y
YOLOv8-sot https://github.com/ultralytics/ultralytics N N Y

Requirements

  • MNN >= 2.0.0
  • ONNXRuntime >=1.8.1
  • TensorRT >= 8.5

Demo

## MNN inference (Yolov8)
cd mnn/yolov8/
mkdir build && cd build
cmake ..
make
./yolov8_mnn [demo] [model_path] [dataset] [input] [input_size] [show]


## ONNXRuntime inference
python yolov8_onnx_inference.py DEMO MODEL INPUT [--score_thr SCORE_THR] [--nms_thr NMS_THR] [--input_size INPUT_SIZE] [--classes_txt CLASSES_TXT] [--show]


## TensorRT inference
# you may need to modify the TensorRT path in CMakeLists.txt according to your install path
# include_directories(/opt/TensorRT-8.5.1.7/include)
# link_directories(/opt/TensorRT-8.5.1.7/lib)
cd tensorrt/yolov8/
mkdir build && cd build
cmake ..
make
./yolov8_trt [demo] [model_path] [dataset] [input] [input_size] [show]

Yolov8-n inference with image using MNN:

/yolov8_mnn image /path/to/yolov8n_coco_640_fp16.mnn coco ../../../assets/bus.jpg 640

# output
detect 6 objects in 51.0658 ms
person: 0.873672    ([669.938, 376.312], [808.312, 877.5])
person: 0.868409    ([47.25, 398.25], [243, 901.125])
bus: 0.862305    ([20.25, 229.5], [796.5, 754.312])
person: 0.819331    ([221.062, 405], [344.25, 855.562])
stop sign: 0.343525    ([0, 253.125], [32.0625, 322.312])
person: 0.3012    ([0, 550.125], [65.8125, 872.438])

Yolov8-n inference with camera using MNN:

./yolov8_mnn stream /path/to/yolov8n_coco_640_fp16.mnn coco 0 640 1

Yolov8-n inference with image using ONNXRuntime

python yolov8_onnx_inference.py image /path/to/yolov8n_coco_640.onnx ../assets/bus.jpg --input_size 640

# output
input info:  NodeArg(name='images', type='tensor(float)', shape=[1, 3, 640, 640])
output info:  NodeArg(name='output0', type='tensor(float)', shape=[1, 84, 8400])
person: 0.875    [670, 376, 809, 878]
person: 0.869    [48, 399, 244, 902]
bus: 0.863    [21, 229, 798, 754]
person: 0.82    [221, 405, 344, 857]
stop sign: 0.346    [0, 254, 32, 325]
person: 0.301    [0, 551, 67, 873]

Yolov8-n inference with camera using ONNXRuntime

python yolov8_onnx_inference.py stream /path/to/yolov8n_coco_640.onnx 0 --input_size 640 --show

Yolov8-n inference with image using TensorRT

./yolov8_trt image /path/to/yolov8n_coco_640_fp16.trt coco ../../../assets/bus.jpg 640

# output
detect 6 objects in 386.102 ms
person: 0.875488        ([669.938, 376.312], [808.312, 877.5])
person: 0.868164        ([48.9375, 398.25], [243, 901.125])
bus: 0.862305   ([20.25, 229.5], [796.5, 754.312])
person: 0.820312        ([221.062, 405], [344.25, 855.562])
stop sign: 0.348633     ([0, 253.125], [32.0625, 322.312])
person: 0.301514        ([0, 550.125], [65.8125, 872.438])

Yolov8-n inference with camera using TensorRT

./yolov8_trt stream /path/to/yolov8n_coco_640_fp16.trt coco 0 640 1

Yolov8-n SOT with camera using TensorRT

./yolov8_sot track /path/to/yolov8n_coco_640_fp16.trt coco 0 640
# select your tracking target by clicking the detection bounding box with mouse left button

Yolov8-n SOT with video file using TensorRT

./yolov8_sot track /path/to/yolov8n_coco_640_fp16.trt coco /path/to/video.mp4 640
# select your tracking target by clicking the detection bounding box with mouse left button

Releases

No releases published

Packages

No packages published