Skip to content

aimagelab/TransformerBasedGestureRecognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Transformer-Based Network for Dynamic Hand Gesture Recognition

This is the official PyTorch implementation of the publication:

A. D’Eusanio, A. Simoni, S. Pini, G. Borghi, R. Vezzani, R. Cucchiara
A Transformer-Based Network for Dynamic Hand Gesture Recognition
In International Conference on 3D Vision (3DV) 2020

[Paper] [Project Page]

Transformer-based neural networks represent a successful self-attention mechanism that achieves outstanding results in different topics, such as language understanding and sequence modeling. The application of such models to different types of data, like the visual one, is necessary to push the boundaries of common convolutinal and recurrent neural networks.
Therefore, in this work we propose a transformer-based architecture for the dynamic hand gesture recognition task, focusing on the automotive environment. Moreover, we propose the combined use of depth maps and surface normals as unique sources to successfully solve the task, even in low-light conditions.

The two datasets we used are NVGestures and Briareo. Both of them contain data from multiple sensors: RGB, IR, and depth, allowing the study of multimodal fusion techniques.

In this work, we focused on the sole use of the depth sensor, which provides light-invariant depth maps that can be further processed to obtain an estimation of the surface normals.
Experimental results show that the use of such a simple processing step leads to a significant gain in accuracy.

Getting Started

These instructions will give you a copy of the project up and running on your local machine for development and testing purposes. There isn't much to do, just install the prerequisites and download all the files.

Prerequisites

Things you need to install to run the code:

Python >= 3.6.7
PyTorch >= 1.6

Install CUDA and PyTorch following the main website directive.

Run the command:

pip install requirements.txt

Download datasets

The employed datasets are publicy available:

Once downloaded, unzip anywhere in your drive.

Pretrained model

Pytorch pretrained models are available at this link.

Setup configuration

For this project we used a json file, located in the hyperparameters folder, such as:
hyperparameters/Briareo/[train.json](https://aimagelab.ing.unimore.it/imagelab/page.asp?IdPage=31 "Briareo")

In there, you can set several parameters, like:

  • Dataset, Briareo or NVGestures.
  • phase, select if training or testing.
  • Data-type, select which source is used: depth, rgb, ir, surface normals or optical-flow.
  • Data-Nframe, length of the input sequence, default: 40 frame.
  • Data-path, path where you downloaded and unzipped the dataset.

For every other information check the file.

Usage

python main.py --hypes hyperparameters/NVGestures/train.json
  • --hypes, path to configuration file.

Authors

Ciatation

If you use this code, please cite our paper:

@inproceedings{d2020transformer,
  title={A Transformer-Based Network for Dynamic Hand Gesture Recognition},
  author={D'Eusanio, Andrea and Simoni, Alessandro and Pini, Stefano and Borghi, Guido and Vezzani, Roberto and Cucchiara, Rita},
  booktitle={International Conference on 3D Vision},
  year={2020}
}

License

This project is licensed under the MIT License - see the LICENSE file for details

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages