This project implements Bezier curve-based lane detection techniques for accurate curvature estimation in autonomous driving scenarios. It benchmarks performance against ENet segmentation models and utilizes the TuSimple dataset to improve lane detection accuracy.
- Bezier Curve Lane Detection: Models lane lines with cubic Bezier curves for smoother lane curvature estimation.
- Performance Benchmarking: Compared against ENet segmentation models to validate performance improvements.
- Dataset: Utilizes the TuSimple dataset, improving lane detection accuracy by 15%.
- Real-Time Processing: Optimized algorithms to ensure real-time performance for autonomous navigation.
Lane-Curvature-Detection/ ├── notebooks/ │ ├── Bezier_Curve_Synthetic_Dataset_Final.ipynb │ ├── Bezier_With_Metrics_TuSimple_Dataset.ipynb │ └── ENet_With_Metrics.ipynb ├── presentation/ │ └── EE243_Computer_Vision_Project_Daksh_Akhil.pptx └── README.md
-
Clone the repository:
git clone https://github.com/akhiljoshi7060/Lane-Curvature-Detection.git cd Lane-Curvature-Detection
-
Run the Jupyter notebooks:
jupyter notebook notebooks/Bezier_With_Metrics_TuSimple_Dataset.ipynb