-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
3 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,5 @@ | ||
# EAGNN | ||
A PyTorch Implementation of paper Edge-Based Graph Neural Networks for Cell-Graph Modeling and Prediction (IPMI 2023). | ||
|
||
Abstract: | ||
Identification and classification of cell-graph features using graph-neural networks (GNNs) has been shown to be useful in digital pathology. In this work, we consider the role of edge labels in cell-graph modeling, including histological modeling techniques, edge aggregation in GNN architectures, and edge label prediction. We propose EAGNN (Edge Aggregated GNN), a new GNN model that aggregates both node and edge label information to take advantage of topological information about cellular data and facilitate edge label prediction. We introduce new edge label features that improve histological modeling and prediction. We evaluate our EAGNN model for the task of detecting the presence and location of the basement membrane in oral mucosal tissue, as a proof-of-concept application. |