workspace
is an R package designed to simplify the creation and
management of workspaces. Its main goal is to provide a standardized
solution for organizing and sharing data in applications that require
workspace management.
This package is aimed at developers and analysts seeking to standardize
data management in multi-environment or cross-application contexts. With
workspace
, creating, manipulating, and sharing organized archives
becomes straightforward.
- Generation of structured archives:
- Supports adding datasets in parquet format.
- Enables storing JSON files for semi-structured data.
- Handles R objects stored in RDS format.
- Enhanced interoperability:
- Provides a well-defined and consistent structure for organizing data.
- Facilitates data exchange and processing across different applications or environments.
- Offers tools to easily read and store data within workspaces.
You can install the development version of workspace from GitHub with:
# install.packages("pak")
pak::pak("ardata-fr/workspace")
This is a basic example which shows you how to create a workspace:
library(workspace)
z <- new_workspace()
# store datasets
z <- store_dataset(x = z, dataset = iris, name = "iris_dataset")
z <- store_dataset(x = z, dataset = mtcars, name = "mtcars")
# store json
json_str <- paste0("{\"first_name\": \"John\",\"last_name\": \"Smith\",\"is_alive\": true,",
"\"age\": 27, \"address\": { \"street_address\": \"21 2nd Street\",",
"\"city\": \"New York\",\"state\": \"NY\",\"postal_code\": \"10021-3100\"",
"}}")
z <- store_json(
x = z,
name = "json-example",
json_str = json_str,
filename = "json-example.json",
timestamp = "2023-11-12 11:37:41",
subdir = "blah"
)
# pack workspace as a zip to share it
workspace_zip_file <- tempfile(fileext = ".zip")
pack_workspace(x = z, file = workspace_zip_file)
#> [1] "/private/var/folders/08/2qdvv0q95wn52xy6mxgj340r0000gn/T/RtmpDu03jK/file79c764187a07.zip"
This is a basic example which shows you how to extract data from a workspace:
z <- unpack_workspace(file = workspace_zip_file)
list_object_in_workspace(z)
#> # A tibble: 3 × 5
#> file name subdir type timestamp
#> <chr> <chr> <chr> <chr> <chr>
#> 1 datasets/iris_dataset.parquet iris_dataset datasets dataset 2025-01-11 12:30:…
#> 2 datasets/mtcars.parquet mtcars datasets dataset 2025-01-11 12:30:…
#> 3 assets/blah/json-example.json json-example blah json 2023-11-12 11:37:…
dataset <- read_dataset_in_workspace(z, name = "mtcars")
print(head(dataset))
#> # A tibble: 6 × 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
# store json
json_str <- read_json_str_in_workspace(z, name = "json-example", subdir = "blah")
substr(json_str, 1, 20) |> print()
#> [1] "{\"first_name\": \"John"