-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* FIGURES: port code for score distribution, add type checks * FIGURES: admet satisfaction throughout AL iterations * FIGURES: suppress RDKit warnings * FIGURE: walltime figure * FIGURES: add ability to change the metric for the indication of the upper boundary of the values for generated smiles (max or percentile) * FIGURES: chemical similarity analysis for abl inhibitors * STYLE: extract loader into a separate tool * FIGURES: similarity analysis of scored distribution * GIT: stop tracking exports folder * test * FIGURES: evolution of distribution analysis * FIGURES: training curves * FIGURES: pca analysis * FIGURES: model memorization * FIGURES: interactions count analysis * FIGURES: dataset analysis * FIGURES: dataset analysis * FIGURES: all remaining figures code
- Loading branch information
1 parent
734ebd5
commit a7f055c
Showing
38 changed files
with
7,054 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
import modules.secret | ||
import modules.Graph as Graph | ||
import modules.FilterPassing as flt_pass | ||
import pickle | ||
import os | ||
from typing import List | ||
|
||
GENERATIONS_PATH = modules.secret.PRODUCTION_RUNS_PATH + "2. Generation/smiles/" | ||
EXPORT_PATH = os.path.join(os.getcwd(), "figures", "exports", "admet_satisfaction", "") | ||
|
||
n_iters = 5 | ||
ignored = {"fChar"} | ||
configs = [ | ||
("model7_hnh_admet", "HNH", "ADMET", "softsub"), | ||
("model7_hnh_admetfg", "HNH", "ADMET+FGs", "softsub"), | ||
("model2_hnh", "HNH", "ADMET+FGs", "admetfg_softsub"), | ||
("model7_1iep_admet", "1IEP", "ADMET", "softsub"), | ||
("model7_1iep_admetfg", "1IEP", "ADMET+FGs", "softsub"), | ||
("model2_1iep", "1IEP", "ADMET+FGs", "admetfg_softsub"), | ||
] | ||
rerun_admet = False | ||
max_val = -float("inf") | ||
for prefix, target, filters, channel in configs: | ||
print(prefix, target, filters, channel) | ||
if rerun_admet: | ||
fnames = flt_pass.prepare_generation_fnames( | ||
prefix=prefix, | ||
n_iters=n_iters, | ||
channel=channel, | ||
filters=filters, | ||
target=target, | ||
) | ||
load_generation = flt_pass.prepare_generation_loader(base_path=GENERATIONS_PATH) | ||
traces_lists: List[flt_pass.Trace] = [] | ||
filtered_dicts = [] | ||
max_val = -float("inf") | ||
for i, fname in enumerate(fnames): | ||
smiles = load_generation(fname) | ||
filtToData = flt_pass.compute_admet_metrics(smiles) | ||
filtered_dicts.append(filtToData) | ||
pickle.dump( | ||
filtered_dicts, | ||
open(EXPORT_PATH + f"{prefix}_{filters}_{target}_dicts.pkl", "wb"), | ||
) | ||
traces, i_max_val = flt_pass.create_admet_metrics_traces( | ||
filtToData, | ||
showlegend=i == 0, | ||
ignored_metrics=ignored, | ||
distribution_upper_percentile=100, | ||
) | ||
max_val = max(max_val, i_max_val) | ||
traces_lists.append(traces) | ||
else: | ||
filtered_dicts = pickle.load( | ||
open(EXPORT_PATH + f"{prefix}_{filters}_{target}_dicts.pkl", "rb") | ||
) | ||
traces_lists = [] | ||
for i, filtToData in enumerate(filtered_dicts): | ||
traces, i_max_val = flt_pass.create_admet_metrics_traces( | ||
filtToData, | ||
showlegend=i == 0, | ||
ignored_metrics=ignored, | ||
distribution_upper_percentile=95, | ||
) | ||
max_val = max(max_val, i_max_val) | ||
traces_lists.append(traces) | ||
max_val = 1.116 | ||
fig = flt_pass.create_admet_progression_figure( | ||
traces_lists, v_space=0.1, h_space=0.08, y_max=max_val + 0.05 | ||
) | ||
graph = Graph.Graph() | ||
graph.update_parameters(dict(width=1000, height=700, annotation_size=28)) | ||
graph.style_figure(fig) | ||
fig.update_layout( | ||
showlegend=True, | ||
legend=dict( | ||
x=1.0, | ||
y=0.5, | ||
font=dict(size=18), | ||
), | ||
) | ||
graph.save_figure( | ||
figure=fig, path=EXPORT_PATH, fname=f"{prefix}_{filters}_{target}" | ||
) | ||
# print(max_val) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import modules.secret | ||
import os | ||
import modules.ClusterAnalysis as ca | ||
|
||
SAMPLING_PATH = modules.secret.PRODUCTION_RUNS_PATH + "3. Sampling/kmeans_objects/" | ||
EXPORT_PATH = os.path.join( | ||
os.getcwd(), "figures", "exports", "cluster_distribution", "" | ||
) | ||
|
||
import pickle | ||
|
||
|
||
configs = [ | ||
("model7_1iep_admetfg", "1IEP", "ADMET+FGs", "softsub"), | ||
# ("model2_1iep", "1IEP", "ADMET+FGs", "admetfg_softsub"), | ||
# ("model7_1iep_admet", "1IEP", "ADMET", "softsub"), | ||
] | ||
n_iters = 5 | ||
from modules.Graph import Graph | ||
|
||
for prefix, target, filters, channel in configs: | ||
loader = ca.prepare_kmeans_fnames(filters="ADMET+FGs") | ||
fnames = loader(prefix, n_iters, channel, filters, target) | ||
fig = ca.plot_cluster_size_evolution( | ||
path=SAMPLING_PATH, fnames=fnames, n_rows=2, n_cols=3 | ||
) | ||
gr = Graph() | ||
gr.save_figure( | ||
figure=fig, | ||
path=EXPORT_PATH, | ||
fname=f"test_cluster_size_{prefix}_{channel}_{target}_{filters}", | ||
html=True | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
import modules.secret | ||
from modules.Graph import Graph | ||
import modules.DatasetAnalysis as dataset_analysis | ||
import modules.AnalyzeDistribution as analyze_dist | ||
import os | ||
from typing import cast, Iterable | ||
|
||
PRETRAINING_PATH = modules.secret.PRODUCTION_RUNS_PATH + "1. Pretraining/datasets/" | ||
GENERATIONS_PATH = modules.secret.PRODUCTION_RUNS_PATH + "2. Generation/smiles/" | ||
PCA_PATH = modules.secret.PRODUCTION_RUNS_PATH + "3. Sampling/pca_weights/" | ||
PCA_FNAME = "scaler_pca_combined_processed_freq1000_block133_120" | ||
EXPORT_PATH = os.path.join(os.getcwd(), "figures", "exports", "datasets_analysis", "") | ||
|
||
|
||
datasets = ["moses", "guacamol", "combined"] | ||
reduction = "PCA" | ||
desc_type = "mix" | ||
train_sample = 10_000 | ||
generation_sample = 10_000 | ||
|
||
training_smiles = [ | ||
dataset_analysis.load_training_smiles( | ||
PRETRAINING_PATH, dataset, sample=train_sample | ||
) | ||
for dataset in datasets | ||
] | ||
generated_smiles = [ | ||
dataset_analysis.load_generated_smiles( | ||
GENERATIONS_PATH, dataset, sample=generation_sample | ||
) | ||
for dataset in datasets | ||
] | ||
|
||
smile_set = set() | ||
for smile_container in [training_smiles, generated_smiles]: | ||
for smiles in smile_container: | ||
smile_set |= set(smiles) | ||
all_smiles = [training_smiles[i] + generated_smiles[i] for i in range(len(datasets))] | ||
# analyze_dist._calculate_descriptors_for_an_array(smiles=list(smile_set), save_path=EXPORT_PATH, save_name="moses_guac_combined", desc_mode=desc_type) | ||
descriptors = analyze_dist.load_descriptors( | ||
load_path=EXPORT_PATH, load_fname="moses_guac_combined" | ||
) | ||
training_projection = [ | ||
analyze_dist.project_smiles(smiles, descriptors) for smiles in training_smiles | ||
] | ||
generated_projection = [ | ||
analyze_dist.project_smiles(smiles, descriptors) for smiles in generated_smiles | ||
] | ||
training_reduced, generated_reduced = dataset_analysis.reduce_training_and_generations( | ||
training_projection, generated_projection, PCA_PATH, PCA_FNAME | ||
) | ||
|
||
# def invert_even_elts(array): | ||
# return [array[1], array[0], array[3], array[2], array[5], array[4]] | ||
|
||
|
||
traces = dataset_analysis.prepare_scatter_traces( | ||
training_reduced, generated_reduced, | ||
labels=["Generations", "Training Set"], | ||
colorscale=("#240046", "#80ed99"), | ||
trace_opacity=0.5, | ||
marker_size=2, | ||
marker_width=0.1, | ||
) | ||
|
||
fig = dataset_analysis.plot_scatter2d_wsubplots( | ||
traces=traces, | ||
subplot_titles=[ | ||
"<b>MOSES</b>", | ||
"<b>GuacaMol</b>", | ||
"<b>Combined Dataset</b>", | ||
], | ||
n_rows=1, | ||
n_cols=3, | ||
) | ||
|
||
graph = Graph() | ||
graph.update_parameters(dict( | ||
width=1100, | ||
height=400, | ||
xrange=[-18, 50], | ||
yrange=[-18, 23], | ||
xtick_len=4, | ||
ytick_len=4, | ||
xtick_width=1, | ||
ytick_width=1, | ||
axis_title_size=18, | ||
xaxis_title="Principal Component 1 (18.6% variance explained)", | ||
yaxis_title="Principal Component 2<br>(5.7% variance explained)", | ||
show_xzero=True, | ||
show_yzero=True, | ||
annotation_size=20, | ||
)) | ||
graph.style_figure(fig, force_annotations=False) | ||
fig.update_layout(legend=dict( | ||
x=0.01, | ||
y=1.0, | ||
xanchor="left", | ||
yanchor="top", | ||
font=dict(size=16), | ||
orientation="h", | ||
), yaxis2_title="", yaxis3_title="") | ||
graph.save_figure( | ||
figure=fig, | ||
path=EXPORT_PATH, | ||
fname=f"{'+'.join(datasets)}_{desc_type}_{reduction}_trainsample{train_sample}_trainsample{generation_sample}", | ||
html=False, | ||
svg=True, | ||
) |
Oops, something went wrong.