Skip to content

Provides the standard distribution functions for the triangle distribution

Notifications You must be signed in to change notification settings

bertcarnell/triangle

Repository files navigation

© Copyright 2024 Robert Carnell

triangle

An R package to work with the triangle distribution and logarithmic triangle distribution

Github Actions Windows Code Coverage CRAN Downloads CRAN
R-CMD-check AppVeyor build status Coverage status CRAN status

See the package documentation here:

Getting Started

Install the R package:

# Stable CRAN version
install.packages("triangle")

# OR development version from GitHub
require(devtools)
devtools::install_github("bertcarnell/triangle")

use the functions:

  • a = minimum
  • b = maximum
  • c = mode
require(triangle)

Triangle distribution

# rtriangle(n, a, b, c)
set.seed(42)
rtriangle(5, 1, 5, 2)
## [1] 3.988898 4.131038 2.073171 3.573596 2.926584
# ptriangle(x, a, b, c)
ptriangle(0:5, 0, 10, 5)
## [1] 0.00 0.02 0.08 0.18 0.32 0.50
# qtriangle(p, a, b, c)
qtriangle(seq(0, 1, by = 0.2), 1, 10, 3)
## [1]  1.000000  2.897367  3.851830  4.980040  6.450352 10.000000
# dtriangle(x, a, b, c)
dtriangle(0:4, 0, 10, 5)
## [1] 0.00 0.04 0.08 0.12 0.16

Logarithmic triangle distribution

# rltriangle(n, a, b, c, logbase)
set.seed(2001)
rltriangle(5, 1, 100, 10)
## [1] 20.195183 13.001831  4.579489  4.753026  3.572658
# pltriangle(x, a, b, c, logbase)
pltriangle(10^(0:3), 1, 1000, 10)
## [1] 0.0000000 0.3333333 0.8333333 1.0000000
# qltriangle(p, a, b, c, logbase)
qltriangle(seq(0, 1, by = 0.2), 1, 100, 20)
## [1]   1.00000   5.26497  10.47630  17.76210  29.59642 100.00000
# dltriangle(x, a, b, c, logbase)
dltriangle(0:5, 1, 10, 5)
## [1] 0.0000000 0.0000000 0.8613531 1.3652124 1.7227062 2.0000000

Parameter estimates

triangle method of moments estimates

x <- rtriangle(20, 0, 2, 1.5)
triangle_mom(x)
##         a         b         c 
## 0.6341961 1.9096262 1.4197678

triangle maximum likelihood estimates

x <- c(0.1, 0.25, 0.3, 0.4, 0.45, 0.6, 0.75, 0.8)
# triangle_mle(x, debug = FALSE, maxiter = 100)
triangle_mle(x)
## Triangle Maximum Likelihood Estimates
## 
## Call:  triangle_mle(x = x) 
## 
## Estimates:
##    Estimate Std.Err
## a 0.0076277  0.0996
## b 0.9939370  0.1649
## c 0.3000000  0.0861
## 
## Convergence Code:  0
##   CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH
# standard triangle (0,1) likelihood estimates
standard_triangle_mle(x)
## Triangle Maximum Likelihood Estimates
## 
## Call:  standard_triangle_mle(x = x) 
## 
## Estimates:
##   Estimate Std.Err
## a      0.0  0.0000
## b      1.0  0.0000
## c      0.3  0.0871
## 
## Convergence Code:  NA
##  
set.seed(1976)
x <- rtriangle(100, 1, 5, 3.5)
triangle_mle(x)
## Triangle Maximum Likelihood Estimates
## 
## Call:  triangle_mle(x = x) 
## 
## Estimates:
##   Estimate Std.Err
## a   0.9060  0.1259
## b   4.8254  0.0770
## c   3.6853  0.0924
## 
## Convergence Code:  0
##   CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH