-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
90,401 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,233 @@ | ||
// Acknowledgement to Thibault Coppex (@tcoppex) for the 3d-modelview-projection-math. | ||
// Had to adjust it a bit maybe because p5js changed the way webgl is handled since 2016. | ||
|
||
// See: https://editor.p5js.org/bohnacker/sketches/nUk3bVW7b on how to use it | ||
|
||
|
||
function addScreenPositionFunction(p5Instance) { | ||
let p = p5Instance || this; | ||
|
||
// find out which context we're in (2D or WEBGL) | ||
const R_2D = 0; | ||
const R_WEBGL = 1; | ||
let context = getObjectName(p._renderer.drawingContext).search("2D") >= 0 ? R_2D : R_WEBGL; | ||
|
||
// this will be stack to push and pop matrices | ||
if (context == R_2D) { | ||
p._renderer.matrixStack = [new p5.Matrix()]; | ||
} | ||
|
||
// replace all necessary functions to keep track of transformations | ||
|
||
if (p.draw instanceof Function) { | ||
let drawNative = p.draw; | ||
p.draw = function(...args) { | ||
if (context == R_2D) p._renderer.matrixStack = [new p5.Matrix()]; | ||
drawNative.apply(p, args); | ||
}; | ||
} | ||
|
||
|
||
if (p.translate instanceof Function) { | ||
let translateNative = p.translate; | ||
p.translate = function(...args) { | ||
if (context == R_2D) last(p._renderer.matrixStack).translate(args); | ||
translateNative.apply(p, args); | ||
}; | ||
} | ||
|
||
if (p.rotate instanceof Function) { | ||
let rotateNative = p.rotate; | ||
p.rotate = function(...args) { | ||
if (context == R_2D) { | ||
let rad = p._toRadians(args[0]); | ||
last(p._renderer.matrixStack).rotateZ(rad); | ||
} | ||
rotateNative.apply(p, args); | ||
}; | ||
} | ||
|
||
if (p.rotateX instanceof Function) { | ||
let rotateXNative = p.rotateX; | ||
p.rotateX = function(...args) { | ||
if (context == R_2D) { | ||
let rad = p._toRadians(args[0]); | ||
last(p._renderer.matrixStack).rotateX(rad); | ||
} | ||
rotateXNative.apply(p, args); | ||
}; | ||
} | ||
if (p.rotateY instanceof Function) { | ||
let rotateYNative = p.rotateY; | ||
p.rotateY = function(...args) { | ||
if (context == R_2D) { | ||
let rad = p._toRadians(args[0]); | ||
last(p._renderer.matrixStack).rotateY(rad); | ||
} | ||
rotateYNative.apply(p, args); | ||
}; | ||
} | ||
if (p.rotateZ instanceof Function) { | ||
let rotateZNative = p.rotateZ; | ||
p.rotateZ = function(...args) { | ||
if (context == R_2D) { | ||
let rad = p._toRadians(args[0]); | ||
last(p._renderer.matrixStack).rotateZ(rad); | ||
} | ||
rotateZNative.apply(p, args); | ||
}; | ||
} | ||
|
||
if (p.scale instanceof Function) { | ||
let scaleNative = p.scale; | ||
p.scale = function(...args) { | ||
if (context == R_2D) { | ||
let m = last(p._renderer.matrixStack); | ||
let sx = args[0]; | ||
let sy = args[1] || sx; | ||
let sz = context == R_2D ? 1 : args[2]; | ||
m.scale([sx, sy, sz]); | ||
} | ||
scaleNative.apply(p, args); | ||
}; | ||
} | ||
|
||
|
||
// Help needed: don't know what transformation matrix to use | ||
// Solved: Matrix multiplication had to be in reversed order. | ||
// Still, this looks like it could be simplified. | ||
|
||
if (p.shearX instanceof Function) { | ||
let shearXNative = p.shearX; | ||
p.shearX = function(...args) { | ||
if (context == R_2D) { | ||
let rad = p._toRadians(args[0]); | ||
let stack = p._renderer.matrixStack; | ||
let m = last(stack); | ||
let sm = new p5.Matrix(); | ||
sm.mat4[4] = Math.tan(rad); | ||
sm.mult(m); | ||
stack[stack.length - 1] = sm; | ||
} | ||
shearXNative.apply(p, args); | ||
}; | ||
} | ||
|
||
if (p.shearY instanceof Function) { | ||
let shearYNative = p.shearY; | ||
p.shearY = function(...args) { | ||
if (context == R_2D) { | ||
let rad = p._toRadians(args[0]); | ||
let stack = p._renderer.matrixStack; | ||
let m = last(stack); | ||
let sm = new p5.Matrix(); | ||
sm.mat4[1] = Math.tan(rad); | ||
sm.mult(m); | ||
stack[stack.length - 1] = sm; | ||
} | ||
shearYNative.apply(p, args); | ||
}; | ||
} | ||
|
||
|
||
if (p.push instanceof Function) { | ||
let pushNative = p.push; | ||
p.push = function(...args) { | ||
if (context == R_2D) { | ||
let m = last(p._renderer.matrixStack); | ||
p._renderer.matrixStack.push(m.copy()); | ||
} | ||
pushNative.apply(p, args); | ||
}; | ||
} | ||
if (p.pop instanceof Function) { | ||
let popNative = p.pop; | ||
p.pop = function(...args) { | ||
if (context == R_2D) p._renderer.matrixStack.pop(); | ||
popNative.apply(p, args); | ||
}; | ||
} | ||
|
||
p.screenPosition = function(x, y, z) { | ||
if (x instanceof p5.Vector) { | ||
let v = x; | ||
x = v.x; | ||
y = v.y; | ||
z = v.z; | ||
} else if (x instanceof Array) { | ||
let rg = x; | ||
x = rg[0]; | ||
y = rg[1]; | ||
z = rg[2] || 0; | ||
} | ||
z = z || 0; | ||
|
||
if (context == R_2D) { | ||
let m = last(p._renderer.matrixStack); | ||
// probably not needed: | ||
// let mInv = (new p5.Matrix()).invert(m); | ||
|
||
let v = p.createVector(x, y, z); | ||
let vCanvas = multMatrixVector(m, v); | ||
// console.log(vCanvas); | ||
return vCanvas; | ||
|
||
} else { | ||
let v = p.createVector(x, y, z); | ||
|
||
// Calculate the ModelViewProjection Matrix. | ||
let mvp = (p._renderer.uMVMatrix.copy()).mult(p._renderer.uPMatrix); | ||
|
||
// Transform the vector to Normalized Device Coordinate. | ||
let vNDC = multMatrixVector(mvp, v); | ||
|
||
// Transform vector from NDC to Canvas coordinates. | ||
let vCanvas = p.createVector(); | ||
vCanvas.x = 0.5 * vNDC.x * p.width; | ||
vCanvas.y = 0.5 * -vNDC.y * p.height; | ||
vCanvas.z = 0; | ||
|
||
return vCanvas; | ||
} | ||
|
||
} | ||
|
||
|
||
// helper functions --------------------------- | ||
|
||
function last(arr) { | ||
return arr[arr.length - 1]; | ||
} | ||
|
||
function getObjectName(obj) { | ||
var funcNameRegex = /function (.{1,})\(/; | ||
var results = (funcNameRegex).exec((obj).constructor.toString()); | ||
return (results && results.length > 1) ? results[1] : ""; | ||
}; | ||
|
||
|
||
/* Multiply a 4x4 homogeneous matrix by a Vector4 considered as point | ||
* (ie, subject to translation). */ | ||
function multMatrixVector(m, v) { | ||
if (!(m instanceof p5.Matrix) || !(v instanceof p5.Vector)) { | ||
print('multMatrixVector : Invalid arguments'); | ||
return; | ||
} | ||
|
||
var _dest = p.createVector(); | ||
var mat = m.mat4; | ||
|
||
// Multiply in column major order. | ||
_dest.x = mat[0] * v.x + mat[4] * v.y + mat[8] * v.z + mat[12]; | ||
_dest.y = mat[1] * v.x + mat[5] * v.y + mat[9] * v.z + mat[13]; | ||
_dest.z = mat[2] * v.x + mat[6] * v.y + mat[10] * v.z + mat[14]; | ||
var w = mat[3] * v.x + mat[7] * v.y + mat[11] * v.z + mat[15]; | ||
|
||
if (Math.abs(w) > Number.EPSILON) { | ||
_dest.mult(1.0 / w); | ||
} | ||
|
||
return _dest; | ||
} | ||
|
||
} |
Oops, something went wrong.