Skip to content
This repository has been archived by the owner on Aug 22, 2024. It is now read-only.

Improve robustness in some scenarios #17

Open
wants to merge 1 commit into
base: demonstrator
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 57 additions & 29 deletions pytorch_impl/applications/LEARN/demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,7 @@ def node(
non_iid,
q,
port,
sync,
):
logger.debug("**** SETUP AT NODE %s ***", rank)
logger.debug("Number of nodes: %d", n)
Expand All @@ -123,6 +124,8 @@ def node(
logger.debug("Assume Non-iid data? %s", non_iid)
logger.debug("------------------------------------")

sync.put(True)

gar = aggregators.gars.get(gar)

torch.manual_seed(1234) # For reproducibility
Expand Down Expand Up @@ -244,6 +247,7 @@ def node(
class Trainer:
TIMEOUT_PROGRESS_SEC = 1 * 60
TIMEOUT_TERMINATE_SEC = 10
MAX_ATTEMPTS_STARTUP = 5

def __init__(self, n, f, gar, port):
if n < 1 or n > 10:
Expand Down Expand Up @@ -272,35 +276,59 @@ def train(self):
self.status = {rank: -1 for rank in range(self.n)}

q = mp.Queue()

ps = []
for rank in range(self.n):
logger.info("Starting process with rank %d", rank)
p = mp.Process(
target=node,
kwargs=dict(
rank=rank,
is_byzantine=(rank < self.f),
world_size=self.n,
batch=batch_size,
model=model,
dataset=dataset,
loss="binary-cross-entropy",
nb_epochs=nb_epochs,
n=self.n,
f=self.f,
gar=self.gar,
optimizer="rmsprop",
opt_args={"lr": 0.001, "momentum": 0.9, "weight_decay": 0.0005},
non_iid=False,
q=q,
port=self.port,
),
)
p.start()
ps.append(p)

logger.info("Waiting for results")
sync = mp.Queue()

nb_attempt = 0
while True:
logger.info("Starting processes (attempt # %d)", nb_attempt + 1)
ps = []
for rank in range(self.n):
logger.info("Starting process with rank %d", rank)
p = mp.Process(
target=node,
kwargs=dict(
rank=rank,
is_byzantine=(rank < self.f),
world_size=self.n,
batch=batch_size,
model=model,
dataset=dataset,
loss="binary-cross-entropy",
nb_epochs=nb_epochs,
n=self.n,
f=self.f,
gar=self.gar,
optimizer="rmsprop",
opt_args={"lr": 0.001, "momentum": 0.9, "weight_decay": 0.0005},
non_iid=False,
q=q,
port=self.port,
sync=sync,
),
)
p.start()
ps.append(p)

# Sometimes a process fails to start properly for an unknown
# reason, even though `p.is_alive` and other signs look normal.
# This is an attempt to detect the issue early and retry.
try:
sync.get(timeout=10)
for _ in range(len(ps) - 1):
sync.get(timeout=1)
break
except queue.Empty as exc:
# Try to cleanup
for p in ps:
p.kill()

nb_attempt += 1
if nb_attempt == self.MAX_ATTEMPTS_STARTUP:
raise Exception("Timeout while syncing processes") from exc

logger.error("Timeout while syncinc processes, restarting")

logger.info("All processes synchronized -- waiting for results")

try:
acc = []
Expand Down