Project Link | Demo Link | Supplementary Materials
This repository contains the implementation of our paper "G2P-DDM: Generating Sign Pose Sequence from Gloss Sequence with Discrete Diffusion Model".
pip install -r requirements.txt
python3 -m train_pose_vqvae \
--gpus 8 --gpu_ids "0,1,2,3,4,5,6,7" \
--init_lr 2e-4 \
--embedding_dim 128 \
--batchSize 12 \
--n_codes 1024 \
--data_path "Data/ProgressiveTransformersSLP" \
--vocab_file "Data/ProgressiveTransformersSLP/src_vocab.txt" \
--resume_ckpt "" \
--default_root_dir "experiments/pose_vqvae/separate" \
--max_steps 300000 \
--max_frames_num 300 \
python3 -m train_text2pose --gpus 4 --gpu_ids "0,1,2,3" \
--stage2_model "configs/stage2_model/vq_diffusion_codeunet.yaml" \
--default_root_dir "experiments/text2pose/vq_diffusion_codeunet"
python3 -m train_text2pose --gpus 8 --gpu_ids "0,1,2,3,4,5,6,7" \
--stage2_model "configs/stage2_model/vq_diffusion_codeunet.yaml" \
--default_root_dir "experiments/text2pose/test"