This repository has been archived by the owner on Feb 6, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
90 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
import numpy | ||
import six | ||
|
||
import chainer | ||
import chainer.functions as F | ||
from chainer import initializers | ||
import chainer.links as L | ||
|
||
from benchmarks import BenchmarkBase | ||
|
||
|
||
class LinearModel(object): | ||
|
||
def __init__(self, xp, optimizer, unit_num, dtype): | ||
self.dtype = dtype | ||
weight = initializers.HeNormal(1 / numpy.sqrt(2), dtype) | ||
bias = initializers.Constant(0, dtype) | ||
self.model = L.Linear(unit_num, 2, initialW=weight, initial_bias=bias) | ||
self.optimizer = optimizer | ||
optimizer.setup(self.model) | ||
|
||
if xp != numpy: | ||
self.model.to_gpu() | ||
|
||
|
||
class OptimizerBenchmark(BenchmarkBase): | ||
|
||
"""The base class for benchmark of optimizers.""" | ||
|
||
# Call `test_*` methods only once as `backward()` has a side-effect. | ||
number = 1 | ||
|
||
# Repeat the test for 10 times instead of 3 (`timeit.default_repeat`). | ||
repeat = 10 | ||
|
||
def _make_dataset(self, batch_size, unit_num, dtype): | ||
xp = self.xp | ||
x = xp.random.uniform(-1, 1, (batch_size, unit_num)).astype(dtype) | ||
w = xp.random.uniform(-1, 1, (unit_num, 1)).astype(dtype) | ||
b = xp.random.uniform(-1, 1, (1, )).astype(dtype) | ||
a = (xp.dot(x, w) + b).reshape((batch_size, )) | ||
t = (a < 0).astype(numpy.int32) | ||
return chainer.Variable(x), chainer.Variable(t) | ||
|
||
def setup_benchmark(self, optimizer, batch_size, unit_num, dtype): | ||
"""Performs setup of benchmark for optimizers. | ||
Call this in `setup` method of your benchmark class. | ||
Note that this function performs forward computation. | ||
""" | ||
|
||
self.optimizer = optimizer | ||
|
||
model = LinearModel(self.xp, optimizer, unit_num, dtype) | ||
model.model.cleargrads() | ||
x, t = self._make_dataset(batch_size, unit_num, dtype) | ||
y = model.model(x) | ||
loss = F.softmax_cross_entropy(y, t) | ||
loss.backward() | ||
|
||
def update(self, n_times): | ||
"""Runs optimizer.update().""" | ||
|
||
optimizer = self.optimizer | ||
|
||
for i in six.moves.range(n_times): | ||
optimizer.update() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
import numpy | ||
|
||
from chainer import optimizers | ||
|
||
from benchmarks.optimizers import OptimizerBenchmark | ||
from benchmarks.utils import backends | ||
from benchmarks.utils import parameterize | ||
|
||
|
||
@backends('gpu', 'cpu') | ||
@parameterize( | ||
[('dtype', [numpy.float32, numpy.float64]), | ||
('amsgrad', [True, False])]) | ||
class Adam(OptimizerBenchmark): | ||
def setup(self, dtype, amsgrad): | ||
unit_num = 100000 | ||
batch_size = 32 | ||
optimizer = optimizers.Adam(0.05, amsgrad=amsgrad) | ||
|
||
self.setup_benchmark(optimizer, batch_size, unit_num, dtype) | ||
|
||
def time_update(self, dtype, amsgrad): | ||
self.update(1000) |