Skip to content

Commit

Permalink
Reformat use yapf 0.27.0 & Add yapf style file (#672)
Browse files Browse the repository at this point in the history
* Reformat use yapf 0.27.0

* Add yapf style file
  • Loading branch information
OceanPang authored and hellock committed May 20, 2019
1 parent 4bbb4a2 commit 97d0855
Show file tree
Hide file tree
Showing 32 changed files with 108 additions and 128 deletions.
4 changes: 4 additions & 0 deletions .style.yapf
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
[style]
BASED_ON_STYLE = pep8
BLANK_LINE_BEFORE_NESTED_CLASS_OR_DEF = true
SPLIT_BEFORE_EXPRESSION_AFTER_OPENING_PAREN = true
4 changes: 1 addition & 3 deletions configs/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,9 +11,7 @@
frozen_stages=1,
style='pytorch',
dcn=dict(
modulated=False,
deformable_groups=1,
fallback_on_stride=False),
modulated=False, deformable_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True)),
neck=dict(
type='FPN',
Expand Down
4 changes: 1 addition & 3 deletions configs/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,9 +11,7 @@
frozen_stages=1,
style='pytorch',
dcn=dict(
modulated=False,
deformable_groups=1,
fallback_on_stride=False),
modulated=False, deformable_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True)),
neck=dict(
type='FPN',
Expand Down
4 changes: 1 addition & 3 deletions configs/dcn/faster_rcnn_dconv_c3-c5_r50_fpn_1x.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,7 @@
frozen_stages=1,
style='pytorch',
dcn=dict(
modulated=False,
deformable_groups=1,
fallback_on_stride=False),
modulated=False, deformable_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True)),
neck=dict(
type='FPN',
Expand Down
4 changes: 1 addition & 3 deletions configs/dcn/faster_rcnn_mdconv_c3-c5_r50_fpn_1x.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,7 @@
frozen_stages=1,
style='pytorch',
dcn=dict(
modulated=True,
deformable_groups=1,
fallback_on_stride=False),
modulated=True, deformable_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True)),
neck=dict(
type='FPN',
Expand Down
4 changes: 1 addition & 3 deletions configs/dcn/mask_rcnn_dconv_c3-c5_r50_fpn_1x.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,7 @@
frozen_stages=1,
style='pytorch',
dcn=dict(
modulated=False,
deformable_groups=1,
fallback_on_stride=False),
modulated=False, deformable_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True)),
neck=dict(
type='FPN',
Expand Down
4 changes: 1 addition & 3 deletions configs/gn+ws/faster_rcnn_r50_fpn_gn_ws_1x.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,9 +99,7 @@
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_thr=0.5),
max_per_img=100))
score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100))
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
Expand Down
3 changes: 1 addition & 2 deletions mmdet/apis/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,8 +124,7 @@ def show_result(img, result, class_names, score_thr=0.3, out_file=None):
segms = mmcv.concat_list(segm_result)
inds = np.where(bboxes[:, -1] > score_thr)[0]
for i in inds:
color_mask = np.random.randint(
0, 256, (1, 3), dtype=np.uint8)
color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8)
mask = maskUtils.decode(segms[i]).astype(np.bool)
img[mask] = img[mask] * 0.5 + color_mask * 0.5
# draw bounding boxes
Expand Down
4 changes: 2 additions & 2 deletions mmdet/apis/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,8 +91,8 @@ def build_optimizer(model, optimizer_cfg):
paramwise_options = optimizer_cfg.pop('paramwise_options', None)
# if no paramwise option is specified, just use the global setting
if paramwise_options is None:
return obj_from_dict(optimizer_cfg, torch.optim,
dict(params=model.parameters()))
return obj_from_dict(
optimizer_cfg, torch.optim, dict(params=model.parameters()))
else:
assert isinstance(paramwise_options, dict)
# get base lr and weight decay
Expand Down
6 changes: 2 additions & 4 deletions mmdet/core/bbox/assign_sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,7 @@ def build_assigner(cfg, **kwargs):
if isinstance(cfg, assigners.BaseAssigner):
return cfg
elif isinstance(cfg, dict):
return mmcv.runner.obj_from_dict(
cfg, assigners, default_args=kwargs)
return mmcv.runner.obj_from_dict(cfg, assigners, default_args=kwargs)
else:
raise TypeError('Invalid type {} for building a sampler'.format(
type(cfg)))
Expand All @@ -18,8 +17,7 @@ def build_sampler(cfg, **kwargs):
if isinstance(cfg, samplers.BaseSampler):
return cfg
elif isinstance(cfg, dict):
return mmcv.runner.obj_from_dict(
cfg, samplers, default_args=kwargs)
return mmcv.runner.obj_from_dict(cfg, samplers, default_args=kwargs)
else:
raise TypeError('Invalid type {} for building a sampler'.format(
type(cfg)))
Expand Down
4 changes: 2 additions & 2 deletions mmdet/core/evaluation/mean_ap.py
Original file line number Diff line number Diff line change
Expand Up @@ -261,8 +261,8 @@ def eval_map(det_results,
cls_dets, cls_gts, cls_gt_ignore = get_cls_results(
det_results, gt_bboxes, gt_labels, gt_ignore, i)
# calculate tp and fp for each image
tpfp_func = (tpfp_imagenet
if dataset in ['det', 'vid'] else tpfp_default)
tpfp_func = (
tpfp_imagenet if dataset in ['det', 'vid'] else tpfp_default)
tpfp = [
tpfp_func(cls_dets[j], cls_gts[j], cls_gt_ignore[j], iou_thr,
area_ranges) for j in range(len(cls_dets))
Expand Down
5 changes: 2 additions & 3 deletions mmdet/core/post_processing/bbox_nms.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,9 +45,8 @@ def multiclass_nms(multi_bboxes,
_scores *= score_factors[cls_inds]
cls_dets = torch.cat([_bboxes, _scores[:, None]], dim=1)
cls_dets, _ = nms_op(cls_dets, **nms_cfg_)
cls_labels = multi_bboxes.new_full((cls_dets.shape[0], ),
i - 1,
dtype=torch.long)
cls_labels = multi_bboxes.new_full(
(cls_dets.shape[0], ), i - 1, dtype=torch.long)
bboxes.append(cls_dets)
labels.append(cls_labels)
if bboxes:
Expand Down
4 changes: 1 addition & 3 deletions mmdet/datasets/extra_aug.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,9 +91,7 @@ def __call__(self, img, boxes, labels):

class RandomCrop(object):

def __init__(self,
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
min_crop_size=0.3):
def __init__(self, min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3):
# 1: return ori img
self.sample_mode = (1, *min_ious, 0)
self.min_crop_size = min_crop_size
Expand Down
4 changes: 1 addition & 3 deletions mmdet/datasets/loader/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,4 @@
from .build_loader import build_dataloader
from .sampler import GroupSampler, DistributedGroupSampler

__all__ = [
'GroupSampler', 'DistributedGroupSampler', 'build_dataloader'
]
__all__ = ['GroupSampler', 'DistributedGroupSampler', 'build_dataloader']
22 changes: 10 additions & 12 deletions mmdet/datasets/loader/build_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,24 +25,22 @@ def build_dataloader(dataset,
sampler = DistributedGroupSampler(dataset, imgs_per_gpu,
world_size, rank)
else:
sampler = DistributedSampler(dataset,
world_size,
rank,
shuffle=False)
sampler = DistributedSampler(
dataset, world_size, rank, shuffle=False)
batch_size = imgs_per_gpu
num_workers = workers_per_gpu
else:
sampler = GroupSampler(dataset, imgs_per_gpu) if shuffle else None
batch_size = num_gpus * imgs_per_gpu
num_workers = num_gpus * workers_per_gpu

data_loader = DataLoader(dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=num_workers,
collate_fn=partial(collate,
samples_per_gpu=imgs_per_gpu),
pin_memory=False,
**kwargs)
data_loader = DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=num_workers,
collate_fn=partial(collate, samples_per_gpu=imgs_per_gpu),
pin_memory=False,
**kwargs)

return data_loader
4 changes: 2 additions & 2 deletions mmdet/datasets/loader/sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,8 +139,8 @@ def __iter__(self):

indices = [
indices[j] for i in list(
torch.randperm(len(indices) // self.samples_per_gpu,
generator=g))
torch.randperm(
len(indices) // self.samples_per_gpu, generator=g))
for j in range(i * self.samples_per_gpu, (i + 1) *
self.samples_per_gpu)
]
Expand Down
4 changes: 2 additions & 2 deletions mmdet/datasets/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,8 @@ def __call__(self, img, scale, flip=False, keep_ratio=True):
else:
img, w_scale, h_scale = mmcv.imresize(
img, scale, return_scale=True)
scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
dtype=np.float32)
scale_factor = np.array(
[w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
img_shape = img.shape
img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
if flip:
Expand Down
5 changes: 3 additions & 2 deletions mmdet/models/anchor_heads/anchor_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,8 +196,9 @@ def loss(self,
return None
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg) = cls_reg_targets
num_total_samples = (num_total_pos if self.cls_focal_loss else
num_total_pos + num_total_neg)
num_total_samples = (
num_total_pos
if self.cls_focal_loss else num_total_pos + num_total_neg)
losses_cls, losses_reg = multi_apply(
self.loss_single,
cls_scores,
Expand Down
7 changes: 1 addition & 6 deletions mmdet/models/backbones/resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,12 +43,7 @@ def __init__(self,
bias=False)
self.add_module(self.norm1_name, norm1)
self.conv2 = build_conv_layer(
conv_cfg,
planes,
planes,
3,
padding=1,
bias=False)
conv_cfg, planes, planes, 3, padding=1, bias=False)
self.add_module(self.norm2_name, norm2)

self.relu = nn.ReLU(inplace=True)
Expand Down
8 changes: 4 additions & 4 deletions mmdet/models/bbox_heads/convfc_bbox_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,8 +94,8 @@ def _add_conv_fc_branch(self,
branch_convs = nn.ModuleList()
if num_branch_convs > 0:
for i in range(num_branch_convs):
conv_in_channels = (last_layer_dim
if i == 0 else self.conv_out_channels)
conv_in_channels = (
last_layer_dim if i == 0 else self.conv_out_channels)
branch_convs.append(
ConvModule(
conv_in_channels,
Expand All @@ -114,8 +114,8 @@ def _add_conv_fc_branch(self,
or self.num_shared_fcs == 0) and not self.with_avg_pool:
last_layer_dim *= (self.roi_feat_size * self.roi_feat_size)
for i in range(num_branch_fcs):
fc_in_channels = (last_layer_dim
if i == 0 else self.fc_out_channels)
fc_in_channels = (
last_layer_dim if i == 0 else self.fc_out_channels)
branch_fcs.append(
nn.Linear(fc_in_channels, self.fc_out_channels))
last_layer_dim = self.fc_out_channels
Expand Down
18 changes: 10 additions & 8 deletions mmdet/models/detectors/cascade_rcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -186,8 +186,8 @@ def forward_train(self,
gt_labels, rcnn_train_cfg)
loss_bbox = bbox_head.loss(cls_score, bbox_pred, *bbox_targets)
for name, value in loss_bbox.items():
losses['s{}.{}'.format(
i, name)] = (value * lw if 'loss' in name else value)
losses['s{}.{}'.format(i, name)] = (
value * lw if 'loss' in name else value)

# mask head forward and loss
if self.with_mask:
Expand Down Expand Up @@ -224,8 +224,8 @@ def forward_train(self,
[res.pos_gt_labels for res in sampling_results])
loss_mask = mask_head.loss(mask_pred, mask_targets, pos_labels)
for name, value in loss_mask.items():
losses['s{}.{}'.format(
i, name)] = (value * lw if 'loss' in name else value)
losses['s{}.{}'.format(i, name)] = (
value * lw if 'loss' in name else value)

# refine bboxes
if i < self.num_stages - 1:
Expand Down Expand Up @@ -286,8 +286,9 @@ def simple_test(self, img, img_meta, proposals=None, rescale=False):
[] for _ in range(mask_head.num_classes - 1)
]
else:
_bboxes = (det_bboxes[:, :4] * scale_factor
if rescale else det_bboxes)
_bboxes = (
det_bboxes[:, :4] * scale_factor
if rescale else det_bboxes)
mask_rois = bbox2roi([_bboxes])
mask_feats = mask_roi_extractor(
x[:len(mask_roi_extractor.featmap_strides)],
Expand Down Expand Up @@ -324,8 +325,9 @@ def simple_test(self, img, img_meta, proposals=None, rescale=False):
[] for _ in range(self.mask_head[-1].num_classes - 1)
]
else:
_bboxes = (det_bboxes[:, :4] * scale_factor
if rescale else det_bboxes)
_bboxes = (
det_bboxes[:, :4] * scale_factor
if rescale else det_bboxes)
mask_rois = bbox2roi([_bboxes])
aug_masks = []
for i in range(self.num_stages):
Expand Down
18 changes: 10 additions & 8 deletions mmdet/models/detectors/htc.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,8 +224,8 @@ def forward_train(self,
roi_labels = bbox_targets[0]

for name, value in loss_bbox.items():
losses['s{}.{}'.format(
i, name)] = (value * lw if 'loss' in name else value)
losses['s{}.{}'.format(i, name)] = (
value * lw if 'loss' in name else value)

# mask head forward and loss
if self.with_mask:
Expand Down Expand Up @@ -253,8 +253,8 @@ def forward_train(self,
gt_masks, rcnn_train_cfg,
semantic_feat)
for name, value in loss_mask.items():
losses['s{}.{}'.format(
i, name)] = (value * lw if 'loss' in name else value)
losses['s{}.{}'.format(i, name)] = (
value * lw if 'loss' in name else value)

# refine bboxes (same as Cascade R-CNN)
if i < self.num_stages - 1 and not self.interleaved:
Expand Down Expand Up @@ -312,8 +312,9 @@ def simple_test(self, img, img_meta, proposals=None, rescale=False):
[] for _ in range(mask_head.num_classes - 1)
]
else:
_bboxes = (det_bboxes[:, :4] * scale_factor
if rescale else det_bboxes)
_bboxes = (
det_bboxes[:, :4] * scale_factor
if rescale else det_bboxes)
mask_pred = self._mask_forward_test(
i, x, _bboxes, semantic_feat=semantic_feat)
segm_result = mask_head.get_seg_masks(
Expand Down Expand Up @@ -345,8 +346,9 @@ def simple_test(self, img, img_meta, proposals=None, rescale=False):
[] for _ in range(self.mask_head[-1].num_classes - 1)
]
else:
_bboxes = (det_bboxes[:, :4] * scale_factor
if rescale else det_bboxes)
_bboxes = (
det_bboxes[:, :4] * scale_factor
if rescale else det_bboxes)

mask_rois = bbox2roi([_bboxes])
aug_masks = []
Expand Down
4 changes: 2 additions & 2 deletions mmdet/models/detectors/test_mixins.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,8 +105,8 @@ def simple_test_mask(self,
else:
# if det_bboxes is rescaled to the original image size, we need to
# rescale it back to the testing scale to obtain RoIs.
_bboxes = (det_bboxes[:, :4] * scale_factor
if rescale else det_bboxes)
_bboxes = (
det_bboxes[:, :4] * scale_factor if rescale else det_bboxes)
mask_rois = bbox2roi([_bboxes])
mask_feats = self.mask_roi_extractor(
x[:len(self.mask_roi_extractor.featmap_strides)], mask_rois)
Expand Down
14 changes: 7 additions & 7 deletions mmdet/models/mask_heads/fcn_mask_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,8 +43,8 @@ def __init__(self,

self.convs = nn.ModuleList()
for i in range(self.num_convs):
in_channels = (self.in_channels
if i == 0 else self.conv_out_channels)
in_channels = (
self.in_channels if i == 0 else self.conv_out_channels)
padding = (self.conv_kernel_size - 1) // 2
self.convs.append(
ConvModule(
Expand All @@ -54,8 +54,8 @@ def __init__(self,
padding=padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
upsample_in_channels = (self.conv_out_channels
if self.num_convs > 0 else in_channels)
upsample_in_channels = (
self.conv_out_channels if self.num_convs > 0 else in_channels)
if self.upsample_method is None:
self.upsample = None
elif self.upsample_method == 'deconv':
Expand All @@ -69,9 +69,9 @@ def __init__(self,
scale_factor=self.upsample_ratio, mode=self.upsample_method)

out_channels = 1 if self.class_agnostic else self.num_classes
logits_in_channel = (self.conv_out_channels
if self.upsample_method == 'deconv' else
upsample_in_channels)
logits_in_channel = (
self.conv_out_channels
if self.upsample_method == 'deconv' else upsample_in_channels)
self.conv_logits = nn.Conv2d(logits_in_channel, out_channels, 1)
self.relu = nn.ReLU(inplace=True)
self.debug_imgs = None
Expand Down
Loading

0 comments on commit 97d0855

Please sign in to comment.