-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathcompress.py
executable file
·48 lines (38 loc) · 1.66 KB
/
compress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python3
import os
import lzma
import multiprocessing
import shutil
import numpy as np
from pathlib import Path
from datasets import load_dataset, DatasetDict
HERE = Path(__file__).resolve().parent
output_dir = HERE / './compression_challenge_submission/'
def compress_tokens(tokens: np.ndarray) -> bytes:
tokens = tokens.astype(np.int16).reshape(-1, 128).T.ravel().tobytes() # transposing increases compression rate ;)
return lzma.compress(tokens)
def compress_example(example):
path = Path(example['path'])
tokens = np.load(path)
compressed = compress_tokens(tokens)
compression_rate = (tokens.size * 10 / 8) / len(compressed) # 10 bits per token
with open(output_dir/path.name, 'wb') as f:
f.write(compressed)
example['compression_rate'] = compression_rate
return example
if __name__ == '__main__':
os.makedirs(output_dir, exist_ok=True)
num_proc = multiprocessing.cpu_count()
# load split 0 and 1
splits = ['0', '1']
data_files = {'0': 'data_0_to_2500.zip', '1': 'data_2500_to_5000.zip'} # force huggingface datasets to only download these files
ds = load_dataset('commaai/commavq', num_proc=num_proc, split=splits, data_files=data_files)
ds = DatasetDict(zip(splits, ds))
# compress
ratios = ds.map(compress_example, desc="compress_example", num_proc=num_proc, load_from_cache_file=False)
# make archive
shutil.copy(HERE/'decompress.py', output_dir)
shutil.make_archive(HERE/'compression_challenge_submission', 'zip', output_dir)
# print compression rate
rate = (sum(ds.num_rows.values()) * 1200 * 128 * 10 / 8) / os.path.getsize(HERE/"compression_challenge_submission.zip")
print(f"Compression rate: {rate:.1f}")