Skip to content

Commit

Permalink
Merge pull request #23 from petrasvestartas/compas_namespace
Browse files Browse the repository at this point in the history
ADD poinset method: reduction, smoothing, normal estimation
  • Loading branch information
tomvanmele authored Jan 13, 2024
2 parents ac022b2 + af415b1 commit 9f5d147
Show file tree
Hide file tree
Showing 13 changed files with 10,467 additions and 25 deletions.
10,011 changes: 10,011 additions & 0 deletions data/box.ply

Large diffs are not rendered by default.

Binary file added docs/_images/cgal_pointset_normal_estimation.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/_images/cgal_pointset_reduction.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/_images/cgal_pointset_smoothing.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
37 changes: 37 additions & 0 deletions docs/examples/pointset_reduction.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
from pathlib import Path
from compas.geometry import Pointcloud, Translation
from compas_view2.app import App
from compas_cgal.reconstruction import pointset_reduction

# Define the file path for the point cloud data
FILE = Path(__file__).parent.parent.parent / "data" / "forked_branch_1.ply"

# Load the original point cloud
original_points = Pointcloud.from_ply(FILE)

# Create a copy of the point cloud for processing
cloud = Pointcloud.from_ply(FILE)

# Translate the original point cloud
cloud.transform(Translation.from_vector([-1000, 0, 0]))

# Apply point set reduction to the translated point cloud
points = pointset_reduction(cloud, 50)
print(f"Original points: {len(cloud)}, Reduced points: {len(points)}")

# Initialize the COMPAS viewer
viewer = App(width=1600, height=900)

# Adjust viewer settings
viewer.view.camera.scale = 1000
viewer.view.grid.cell_size = 1000

# Add the reduced point cloud and the original point cloud to the viewer
viewer.add(Pointcloud(points))
viewer.add(Pointcloud(original_points))

# Set the camera to zoom to fit all points
viewer.view.camera.zoom_extents()

# Run the viewer
viewer.run()
11 changes: 11 additions & 0 deletions docs/examples/pointset_reduction.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
********************************************************************************
Pointset Reduction
********************************************************************************

.. figure:: /_images/cgal_pointset_reduction.png
:figclass: figure
:class: figure-img img-fluid


.. literalinclude:: pointset_reduction.py
:language: python
51 changes: 51 additions & 0 deletions docs/examples/pointsets_normals.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
from pathlib import Path
from compas.geometry import Pointcloud, Point, Line
from compas_view2.app import App
from compas_view2.collections import Collection
from compas.colors import Color
from compas_cgal.reconstruction import pointset_normal_estimation

# Define the file path for the point cloud data
FILE = Path(__file__).parent.parent.parent / "data" / "forked_branch_1.ply"

# Load the point cloud data from the PLY file
cloud = Pointcloud.from_ply(FILE)

# Estimate normals for the point cloud
points, vectors = pointset_normal_estimation(cloud, 16, True)
print(f"Original points: {len(cloud)}, Points with normals: {len(points)}, Vectors: {len(vectors)}")

# Create lines and properties for visualizing normals
lines = []
line_properties = []
line_scale = 25

# Iterate over points and vectors to create lines and color properties
for p, v in zip(points, vectors):
lines.append(Line(Point(p[0], p[1], p[2]), Point(p[0] + v[0] * line_scale, p[1] + v[1] * line_scale, p[2] + v[2] * line_scale)))

# Normalize vector components to be in the range [0, 1] for color representation
r = (v[0] + 1) * 0.5
g = (v[1] + 1) * 0.5
b = (v[2] + 1) * 0.5

# Store line color properties
line_properties.append({'linecolor': Color(r, g, b)})

# Initialize the COMPAS viewer
viewer = App(width=1600, height=900)

# Adjust viewer settings
viewer.view.camera.scale = 1000
viewer.view.grid.cell_size = 1000

# Create a line collection and add it to the viewer
line_collection = Collection(lines, line_properties)
viewer.add(Pointcloud(points))
viewer.add(line_collection)

# Set the camera to zoom to fit all points and lines
viewer.view.camera.zoom_extents()

# Run the viewer
viewer.run()
11 changes: 11 additions & 0 deletions docs/examples/pointsets_normals.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
********************************************************************************
Pointset Normal Estimation
********************************************************************************

.. figure:: /_images/cgal_pointset_normal_estimation.png
:figclass: figure
:class: figure-img img-fluid


.. literalinclude:: pointsets_normals.py
:language: python
37 changes: 37 additions & 0 deletions docs/examples/pointsets_smoothing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
from pathlib import Path
from compas.geometry import Pointcloud, Translation
from compas_view2.app import App
from compas_cgal.reconstruction import pointset_smoothing

# Define the path to the PLY file
ply_file_path = Path(__file__).parent.parent.parent / "data" / "box.ply"

# Load the original point cloud and translate it
original_points = Pointcloud.from_ply(ply_file_path)
original_points.transform(Translation.from_vector([-10000, 0, 0]))

# Load another copy of the point cloud for comparison and translate it in the opposite direction
transformed_points = Pointcloud.from_ply(ply_file_path)
transformed_points.transform(Translation.from_vector([10000, 0, 0]))

# Apply point set smoothing to the transformed point cloud
smoothed_points = pointset_smoothing(transformed_points, 1000, 3)

# Create Pointcloud objects for visualization
cloud_original = Pointcloud(original_points)
cloud_transformed = Pointcloud(smoothed_points)

# Set up the viewer
viewer = App(width=1600, height=900)
viewer.view.camera.scale = 1000
viewer.view.grid.cell_size = 1000

# Add the Pointclouds to the viewer
viewer.add(cloud_original)
viewer.add(cloud_transformed)

# Adjust the camera and grid settings
viewer.view.camera.zoom_extents()

# Run the viewer
viewer.run()
11 changes: 11 additions & 0 deletions docs/examples/pointsets_smoothing.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
********************************************************************************
Pointset Smoothing
********************************************************************************

.. figure:: /_images/cgal_pointset_smoothing.png
:figclass: figure
:class: figure-img img-fluid


.. literalinclude:: pointsets_smoothing.py
:language: python
73 changes: 73 additions & 0 deletions src/compas_cgal/reconstruction.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,3 +55,76 @@ def pointset_outlier_removal(
"""
P = np.asarray(points, dtype=np.float64)
return reconstruction.pointset_outlier_removal(P, nnnbrs, radius)


def pointset_reduction(
points: Union[list[Point], NDArray[Shape["Any, 3"], Float]],
spacing: float = 2,
) -> NDArray[Shape["Any, 3"], Float]:
"""Remove outliers from a point cloud using the point set outlier removal algorithm.
Parameters
----------
points : list of :class:`compas.geometry.Point` or :class:`numpy.ndarray`
The points of the point cloud.
spacing : int, optional
The cell size.
Returns
-------
:class:`numpy.ndarray`
The vectors of the point cloud.
"""
P = np.asarray(points, dtype=np.float64)
return reconstruction.pointset_reduction(P, spacing)


def pointset_smoothing(
points: Union[list[Point], NDArray[Shape["Any, 3"], Float]],
neighbors: int = 8,
iterations: int = 1,
) -> NDArray[Shape["Any, 3"], Float]:
"""Remove outliers from a point cloud using the point set outlier removal algorithm.
Parameters
----------
points : list of :class:`compas.geometry.Point` or :class:`numpy.ndarray`
The points of the point cloud.
neighbors : int, optional
The number of nearest neighbors to consider for each point.
Returns
-------
:class:`numpy.ndarray`
The vectors of the point cloud.
"""
P = np.asarray(points, dtype=np.float64)
return reconstruction.pointset_smoothing(P, neighbors, iterations)


def pointset_normal_estimation(
points: Union[list[Point], NDArray[Shape["Any, 3"], Float]],
neighbors: int = 8,
erase: bool = False,
) -> Tuple[NDArray[Shape["Any, 3"], Float], NDArray[Shape["Any, 3"], Float]]:
"""Remove outliers from a point cloud using the point set outlier removal algorithm.
Parameters
----------
points : list of :class:`compas.geometry.Point` or :class:`numpy.ndarray`
The points of the point cloud.
neighbors : int, optional
The number of nearest neighbors to consider for each point.
erase : bool, optional
Erase points that are not oriented properly.
Returns
-------
:class:`numpy.ndarray`
The vectors of the point cloud.
"""
P = np.asarray(points, dtype=np.float64)
return reconstruction.pointset_normal_estimation(P, neighbors, erase)
Loading

0 comments on commit 9f5d147

Please sign in to comment.