Skip to content

Commit

Permalink
[relay][qnn]: Fix qnn.avg_pool2d layout inference (apache#17339)
Browse files Browse the repository at this point in the history
  • Loading branch information
f2013519 authored Sep 8, 2024
1 parent e468426 commit 35fdf8b
Show file tree
Hide file tree
Showing 2 changed files with 84 additions and 3 deletions.
8 changes: 5 additions & 3 deletions src/relay/qnn/op/avg_pool2d.cc
Original file line number Diff line number Diff line change
Expand Up @@ -132,9 +132,11 @@ InferCorrectLayoutOutput QnnAvgPoolInferCorrectLayout(const Attrs& attrs,
auto avgpool_new_layouts =
PoolInferCorrectLayout<AvgPool2DAttrs>(attrs, new_in_layouts, old_in_layouts, old_in_types);

// Scales and zero points are scalars, use the "undef" layout for them.
Array<Layout> input_layouts = {avgpool_new_layouts->input_layouts[0], Layout::Undef(),
Layout::Undef(), Layout::Undef(), Layout::Undef()};
// Scales and zero points are scalars, the layouts of these tensors can be treated as channel
// layout.
Layout channel_layout = Layout("C");
Array<Layout> input_layouts = {avgpool_new_layouts->input_layouts[0], channel_layout,
channel_layout, channel_layout, channel_layout};
Array<Layout> output_layouts = avgpool_new_layouts->output_layouts;
return InferCorrectLayoutOutput(input_layouts, output_layouts, attrs);
}
Expand Down
79 changes: 79 additions & 0 deletions tests/python/relay/test_pass_convert_op_layout.py
Original file line number Diff line number Diff line change
Expand Up @@ -1542,6 +1542,85 @@ def expected():
tvm.ir.assert_structural_equal(a, b)


def test_qnn_conv_avgpool_2d_convert_layout():
def before():
x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8")
weight = relay.var("weight", shape=(3, 3, 64, 64), dtype="int8")
y = relay.qnn.op.conv2d(
x,
weight,
relay.const(1, "int32"),
relay.const(1, "int32"),
relay.const(1, "float32"),
relay.const(1, "float32"),
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout="NHWC",
kernel_layout="HWIO",
)
y = relay.cast(y, "int8")
y = relay.qnn.op.avg_pool2d(
y,
relay.const(1, "float32"),
relay.const(1, "int32"),
relay.const(1, "float32"),
relay.const(1, "int32"),
layout="NHWC",
out_layout="NHWC",
pool_size=(3, 3),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
)
y = relay.Function([x, weight], y)
return y

def expected():
x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8")
weight = relay.var("weight", shape=(3, 3, 64, 64), dtype="int8")
x = relay.layout_transform(x, "NHWC", "NCHW")
weight = relay.layout_transform(weight, "HWIO", "OIHW")
y = relay.qnn.op.conv2d(
x,
weight,
relay.const(1, "int32"),
relay.const(1, "int32"),
relay.const(1, "float32"),
relay.const(1, "float32"),
channels=64,
kernel_size=(3, 3),
padding=(1, 1),
data_layout="NCHW",
kernel_layout="OIHW",
)
y = relay.cast(y, "int8")
y = relay.qnn.op.avg_pool2d(
y,
relay.const(1, "float32"),
relay.const(1, "int32"),
relay.const(1, "float32"),
relay.const(1, "int32"),
layout="NCHW",
out_layout="NCHW",
pool_size=(3, 3),
padding=(0, 0),
strides=(1, 1),
dilation=(1, 1),
)
y = relay.layout_transform(y, "NCHW", "NHWC")
y = relay.Function(relay.analysis.free_vars(y), y)
return y

a = before()
a = run_opt_pass(
a, transform.ConvertLayout({"qnn.conv2d": ["NCHW", "default"], "qnn.avg_pool2d": ["NCHW"]})
)
b = run_opt_pass(expected(), transform.InferType())

tvm.ir.assert_structural_equal(a, b)


def test_conv_roi_align_convert_layout():
def before():
x = relay.var("x", shape=(1, 64, 56, 56))
Expand Down

0 comments on commit 35fdf8b

Please sign in to comment.