-
Notifications
You must be signed in to change notification settings - Fork 63
WIP_models
nightwnvol edited this page Aug 3, 2023
·
1 revision
.
└── directory
└── amicowipmodels.py
# Windows (pwsh)
$env:AMICO_WIP_MODELS = path_to_wip_models
# MacOS/Linux
export AMICO_WIP_MODELS=path_to_wip_models
class MyModel:
def __init__(self):
"""To define the parameters of the model, e.g. id and name, returned maps, model-specific parameters etc.
"""
self.id = 'MyModel'
self.name = 'My Model'
self.maps_name = []
self.maps_descr = []
self.param1 = 0
self.param2 = 0
def set(self, param1, param2):
"""For setting all the parameters specific to the model.
NB: the parameters are model-dependent.
"""
self.param1 = param1
self.param2 = param2
def get_params(self):
"""For getting the actual values of all the parameters specific to the model.
NB: the parameters are model-dependent.
"""
params = {}
params['param1'] = self.param1
params['param2'] = self.param2
return params
def set_solver(self, solver_param1=0, solver_param2=0):
"""For setting the parameters required by the solver to fit the model.
NB: the parameters are model-dependent.
Returns
-------
params : dictionary
All the parameters that the solver will need to fit the model
"""
self.solver_params['solver_param1'] = solver_param1
self.solver_params['solver_param2'] = solver_param2
def generate(self, out_path, aux, idx_in, idx_out, ndirs):
"""For generating the signal response-functions and createing the LUT.
NB: do not change the signature!
Parameters
----------
out_path : string
Path where the response function have to be saved
aux : structure
Auxiliary structures to perform SH fitting and rotations
idx_in : array
Indices of the samples belonging to each shell
idx_out : array
Indices of the SH coefficients corresponding to each shell
ndirs : int
Number of directions on the half of the sphere representing the possible orientations of the response functions
"""
def resample(self, in_path, idx_out, Ylm_out, doMergeB0, ndirs):
"""For projecting the LUT to the subject space.
NB: do not change the signature!
Parameters
----------
in_path : Scheme class
Acquisition scheme of the acquired signal
idx_out : array
Indices of the samples belonging to each shell
Ylm_out : array
SH bases to project back each shell to signal space
doMergeB0: bool
Merge b0-volumes into a single volume if True
ndirs : int
Number of directions on the half of the sphere representing the possible orientations of the response functions
Returns
-------
KERNELS : dictionary
Contains the LUT and all corresponding details. In particular, it is
required to have a field 'model' set to "self.id".
"""
def fit(self, evaluation):
"""For fitting the model to the data.
NB: do not change the signature!
Parameters
----------
evaluation: amico.core.Evaluation
AMICO Evaluaton instance
Returns
-------
estimates: np.ndarray
Scalar values eastimated in each voxel
rmse: np.ndarray (optional)
Fitting error (Root Mean Square Error)
nrmse: np.ndarray (optional)
Fitting error (Normalized Root Mean Square Error)
y_corrected: np.ndarray (optional)
Corrected DWI (only FreeWater model)
estimates_mod: np.ndarray (optional)
Modulated maps (only NODDI model)
"""