-
Notifications
You must be signed in to change notification settings - Fork 306
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ftest: add iterable dataset to tests
Features: DfuseFind Signed-off-by: Denis Barakhtanov <[email protected]>
- Loading branch information
Showing
3 changed files
with
263 additions
and
173 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,249 @@ | ||
""" | ||
(C) Copyright 2025 Hewlett Packard Enterprise Development LP | ||
(C) Copyright 2025 Google LLC | ||
(C) Copyright 2025 Enakta Labs Ltd | ||
SPDX-License-Identifier: BSD-2-Clause-Patent | ||
""" | ||
import hashlib | ||
|
||
from apricot import TestWithServers | ||
from dfuse_utils import get_dfuse, start_dfuse | ||
from io_utilities import DirectoryTreeCommand | ||
from pydaos.torch import Dataset, IterableDataset | ||
from run_utils import run_remote | ||
from torch.utils.data import DataLoader | ||
|
||
|
||
class PytorchDatasetsTest(TestWithServers): | ||
"""Test Pytorch Map Style Dataset. | ||
:avocado: recursive | ||
""" | ||
|
||
def test_map_style_dataset(self): | ||
"""Test Map Style Dataset directly without DataLoader | ||
Test Description: Ensure that the dataset can read all the samples that were seeded. | ||
:avocado: tags=all,full_regression | ||
:avocado: tags=vm | ||
:avocado: tags=dfuse,pytorch | ||
:avocado: tags=PytorchDatasetsTest,test_map_style_dataset | ||
""" | ||
pool = self.get_pool() | ||
container = self.get_container(pool) | ||
dfuse = get_dfuse(self, self.hostlist_clients) | ||
start_dfuse(self, dfuse, pool, container) | ||
|
||
root_dir = dfuse.mount_dir.value | ||
|
||
height = self.params.get("tree_height", "/run/map_style_dataset/*") | ||
subdirs = self.params.get("subdirs", "/run/map_style_dataset/*") | ||
files_per_node = self.params.get("files_per_node", "/run/map_style_dataset/*") | ||
file_min_size = self.params.get("file_min_size", "/run/map_style_dataset/*", 4096) | ||
file_max_size = self.params.get("file_max_size", "/run/map_style_dataset/*", 128 * 1024) | ||
|
||
self._create_test_files(root_dir, height, subdirs, files_per_node, | ||
file_min_size, file_max_size) | ||
|
||
expected = self._get_test_files_hashmap(root_dir, self.hostlist_clients) | ||
|
||
dataset = Dataset(pool.identifier, container.identifier) | ||
|
||
actual = {} | ||
for _, content in enumerate(dataset): | ||
h = hashlib.md5(content).hexdigest() | ||
if h not in actual: | ||
actual[h] = 1 | ||
else: | ||
actual[h] += 1 | ||
|
||
if actual != expected: | ||
self.fail("dataset did not fetch all samples") | ||
|
||
def test_iterable_dataset(self): | ||
"""Test Iterable Dataset directly without DataLoader | ||
Test Description: Ensure that the dataset can read all the samples that were seeded. | ||
:avocado: tags=all,full_regression | ||
:avocado: tags=vm | ||
:avocado: tags=dfuse,pytorch | ||
:avocado: tags=PytorchDatasetsTest,test_iterable_dataset | ||
""" | ||
pool = self.get_pool() | ||
container = self.get_container(pool) | ||
dfuse = get_dfuse(self, self.hostlist_clients) | ||
start_dfuse(self, dfuse, pool, container) | ||
|
||
root_dir = dfuse.mount_dir.value | ||
|
||
height = self.params.get("tree_height", "/run/iterable_dataset/*") | ||
subdirs = self.params.get("subdirs", "/run/iterable_dataset/*") | ||
files_per_node = self.params.get("files_per_node", "/run/iterable_dataset/*") | ||
file_min_size = self.params.get("file_min_size", "/run/iterable_dataset/*", 4096) | ||
file_max_size = self.params.get("file_max_size", "/run/iterable_dataset/*", 128 * 1024) | ||
|
||
self._create_test_files(root_dir, height, subdirs, files_per_node, | ||
file_min_size, file_max_size) | ||
|
||
expected = self._get_test_files_hashmap(root_dir, self.hostlist_clients) | ||
|
||
dataset = IterableDataset(pool.identifier, container.identifier) | ||
|
||
actual = {} | ||
for _, content in enumerate(dataset): | ||
h = hashlib.md5(content).hexdigest() | ||
if h not in actual: | ||
actual[h] = 1 | ||
else: | ||
actual[h] += 1 | ||
|
||
if actual != expected: | ||
self.fail("dataset did not fetch all samples") | ||
|
||
def test_map_dataset_with_dataloader(self): | ||
"""Test Map Style Dataset with DataLoader. | ||
Test Description: Ensure that the DataLoader can read all the samples that were seeded. | ||
:avocado: tags=all,full_regression | ||
:avocado: tags=vm | ||
:avocado: tags=dfuse,pytorch | ||
:avocado: tags=PytorchDatasetsTest,test_map_dataset_with_dataloader | ||
""" | ||
pool = self.get_pool() | ||
container = self.get_container(pool) | ||
dfuse = get_dfuse(self, self.hostlist_clients) | ||
start_dfuse(self, dfuse, pool, container) | ||
|
||
root_dir = dfuse.mount_dir.value | ||
|
||
height = self.params.get("tree_height", "/run/map_dataset_with_dataloader/*") | ||
subdirs = self.params.get("subdirs", "/run/map_dataset_with_dataloader/*") | ||
files_per_node = self.params.get("files_per_node", "/run/map_dataset_with_dataloader/*") | ||
|
||
# DataLoader requires that samples are of the same size | ||
file_min_size = self.params.get("file_min_size", "/run/map_dataset_with_dataloader/*", 4096) | ||
file_max_size = self.params.get("file_max_size", "/run/map_dataset_with_dataloader/*", 4096) | ||
|
||
batch_sizes = self.params.get("batch_size", "/run/map_dataset_with_dataloader/*") | ||
processes = self.params.get("processes", "/run/map_dataset_with_dataloader/*") | ||
|
||
self._create_test_files(root_dir, height, subdirs, files_per_node, | ||
file_min_size, file_max_size) | ||
|
||
expected = self._get_test_files_hashmap(root_dir, self.hostlist_clients) | ||
|
||
dataset = Dataset(pool.identifier, container.identifier) | ||
for procs in processes: | ||
for batch_size in batch_sizes: | ||
self._test_dataloader(dataset, expected, batch_size, procs) | ||
|
||
def test_iterable_dataset_with_dataloader(self): | ||
"""Test Iterable Dataset with DataLoader. | ||
Test Description: Ensure that the DataLoader can read all the samples that were seeded. | ||
:avocado: tags=all,full_regression | ||
:avocado: tags=vm | ||
:avocado: tags=dfuse,pytorch | ||
:avocado: tags=PytorchDatasetsTest,test_iterable_dataset_with_dataloader | ||
""" | ||
pool = self.get_pool() | ||
container = self.get_container(pool) | ||
dfuse = get_dfuse(self, self.hostlist_clients) | ||
start_dfuse(self, dfuse, pool, container) | ||
|
||
root_dir = dfuse.mount_dir.value | ||
|
||
height = self.params.get("tree_height", "/run/iterable_dataset_with_dataloader/*") | ||
subdirs = self.params.get("subdirs", "/run/iterable_dataset_with_dataloader/*") | ||
files_per_node = self.params.get( | ||
"files_per_node", "/run/iterable_dataset_with_dataloader/*") | ||
|
||
# DataLoader requires that samples are of the same size | ||
file_min_size = self.params.get( | ||
"file_min_size", "/run/iterable_dataset_with_dataloader/*", 4096) | ||
file_max_size = self.params.get( | ||
"file_max_size", "/run/iterable_dataset_with_dataloader/*", 4096) | ||
|
||
batch_sizes = self.params.get("batch_size", "/run/iterable_dataset_with_dataloader/*") | ||
processes = self.params.get("processes", "/run/iterable_dataset_with_dataloader/*") | ||
|
||
self._create_test_files(root_dir, height, subdirs, files_per_node, | ||
file_min_size, file_max_size) | ||
|
||
expected = self._get_test_files_hashmap(root_dir, self.hostlist_clients) | ||
|
||
dataset = IterableDataset(pool.identifier, container.identifier) | ||
for procs in processes: | ||
for batch_size in batch_sizes: | ||
self._test_dataloader(dataset, expected, batch_size, procs) | ||
|
||
def _test_dataloader(self, dataset, expected, batch_size, processes): | ||
"""With the given dataset and parameters load all samples using DataLoader | ||
and check if all expected samples are fetched""" | ||
|
||
loader = DataLoader(dataset, | ||
batch_size=batch_size, | ||
num_workers=processes, | ||
# no collation, otherwise tensors are returned | ||
collate_fn=lambda x: x, | ||
worker_init_fn=dataset.worker_init, | ||
drop_last=False) | ||
|
||
actual = {} | ||
for batch in loader: | ||
for content in batch: | ||
h = hashlib.md5(content).hexdigest() | ||
if h not in actual: | ||
actual[h] = 1 | ||
else: | ||
actual[h] += 1 | ||
|
||
if actual != expected: | ||
self.fail( | ||
f"DataLoader with nproc={processes} and bs={batch_size} did not fetch all samples") | ||
|
||
def _create_test_files(self, path, height, subdirs, files_per_node, min_size, max_size): | ||
"""Create a directory tree""" | ||
|
||
dir_tree = DirectoryTreeCommand(self.hostlist_clients) | ||
dir_tree.path.value = path | ||
dir_tree.height.value = height | ||
dir_tree.subdirs.value = subdirs | ||
dir_tree.files.value = files_per_node | ||
dir_tree.prefix.value = "samples" | ||
dir_tree.needles.value = 0 | ||
dir_tree.file_size_min.value = min_size | ||
dir_tree.file_size_max.value = max_size | ||
|
||
self.log.info("Populating: %s", path) | ||
result = dir_tree.run() | ||
if not result.passed: | ||
self.fail( | ||
f"Error running '{dir_tree.command}' for '{path}' on {result.failed_hosts}") | ||
|
||
def _get_test_files_hashmap(self, root_dir, hostlist): | ||
"""Map all files in the directory tree to their md5 hash""" | ||
|
||
cmd = f'find {root_dir} -type f -exec md5sum {{}} + ' | ||
result = run_remote(self.log, hostlist, cmd) | ||
|
||
if not result.passed: | ||
self.fail(f'"{cmd}" failed on {result.failed_hosts}') | ||
|
||
hashes = {} | ||
for line in result.output[0].stdout: | ||
parts = line.split() | ||
if len(parts) != 2: | ||
self.fail(f'unexpected result from md5sum: {line}') | ||
h = parts[0] | ||
if h not in hashes: | ||
hashes[h] = 1 | ||
else: | ||
hashes[h] += 1 | ||
|
||
return hashes |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.