-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
bcf84eb
commit d985426
Showing
1 changed file
with
1 addition
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,7 @@ | ||
Package: freesurferformats | ||
Type: Package | ||
Title: Read and Write 'FreeSurfer' Neuroimaging File Formats | ||
Version: 0.1.15 | ||
Version: 0.1.16 | ||
Authors@R: person("Tim", "Schäfer", role = c("aut", "cre"), email = "[email protected]", comment = c(ORCID = "0000-0002-3683-8070")) | ||
Maintainer: Tim Schäfer <[email protected]> | ||
Description: Provides functions to read and write neuroimaging data in various file formats, with a focus on 'FreeSurfer' <http://freesurfer.net/> formats. This includes, but is not limited to, the following file formats: 1) MGH/MGZ format files, which can contain multi-dimensional images or other data. Typically they contain time-series of three-dimensional brain scans acquired by magnetic resonance imaging (MRI). They can also contain vertex-wise measures of surface morphometry data. The MGH format is named after the Massachusetts General Hospital, and the MGZ format is a compressed version of the same format. 2) 'FreeSurfer' morphometry data files in binary 'curv' format. These contain vertex-wise surface measures, i.e., one scalar value for each vertex of a brain surface mesh. These are typically values like the cortical thickness or brain surface area at each vertex. 3) Annotation file format. This contains a brain surface parcellation derived from a cortical atlas. 4) Surface file format. Contains a brain surface mesh, given by a list of vertices and a list of faces. | ||
|