- 🔗 Fluent chainable lazy operations
- 🔀 Concurrent via threads/processes/
asyncio
- 🇹 Typed, fully annotated,
Stream[T]
is anIterable[T]
- 🛡️ Tested extensively with Python 3.7 to 3.14
- 🪶 Light, no dependencies
pip install streamable
from streamable import Stream
Create a Stream[T]
decorating an Iterable[T]
:
integers: Stream[int] = Stream(range(10))
Chain lazy operations (only evaluated during iteration), each returning a new immutable Stream
:
inverses: Stream[float] = (
integers
.map(lambda n: round(1 / n, 2))
.catch(ZeroDivisionError)
)
Iterate over a Stream[T]
just as you would over any other Iterable[T]
, elements are processed on-the-fly:
- collect
>>> list(inverses)
[1.0, 0.5, 0.33, 0.25, 0.2, 0.17, 0.14, 0.12, 0.11]
>>> set(inverses)
{0.5, 1.0, 0.2, 0.33, 0.25, 0.17, 0.14, 0.12, 0.11}
- reduce
>>> sum(inverses)
2.82
>>> from functools import reduce
>>> reduce(..., inverses)
- loop
>>> for inverse in inverses:
>>> ...
- next
>>> next(iter(inverses))
1.0
A dozen expressive lazy operations and that’s it!
Applies a transformation on elements:
negative_integer_strings: Stream[str] = (
integers
.map(lambda n: -n)
.map(str)
)
assert list(negative_integer_strings) == ['0', '-1', '-2', '-3', '-4', '-5', '-6', '-7', '-8', '-9']
Applies the transformation via
concurrency
threads:
import requests
pokemon_names: Stream[str] = (
Stream(range(1, 4))
.map(lambda i: f"https://pokeapi.co/api/v2/pokemon-species/{i}")
.map(requests.get, concurrency=3)
.map(requests.Response.json)
.map(lambda poke: poke["name"])
)
assert list(pokemon_names) == ['bulbasaur', 'ivysaur', 'venusaur']
Preserves the upstream order by default (FIFO), but you can set
ordered=False
for First Done First Out.
Note
concurrency
is also the size of the buffer containing not-yet-yielded results. If the buffer is full, the iteration over the upstream is paused until a result is yielded from the buffer.
Tip
The performance of thread-based concurrency in a CPU-bound script can be drastically improved by using a Python 3.13+ free-threaded build.
Set
via="process"
:
if __name__ == "__main__":
state: List[int] = []
# integers are mapped
assert integers.map(state.append, concurrency=4, via="process").count() == 10
# but the `state` of the main process is not mutated
assert state == []
The sibling operation
.amap
applies an async function:
import httpx
import asyncio
http_async_client = httpx.AsyncClient()
pokemon_names: Stream[str] = (
Stream(range(1, 4))
.map(lambda i: f"https://pokeapi.co/api/v2/pokemon-species/{i}")
.amap(http_async_client.get, concurrency=3)
.map(httpx.Response.json)
.map(lambda poke: poke["name"])
)
assert list(pokemon_names) == ['bulbasaur', 'ivysaur', 'venusaur']
asyncio.get_event_loop().run_until_complete(http_async_client.aclose())
The
star
function decorator transforms a function that takes several positional arguments into a function that takes a tuple:
from streamable import star
zeros: Stream[int] = (
Stream(enumerate(integers))
.map(star(lambda index, integer: index - integer))
)
assert list(zeros) == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Applies a side effect on elements:
state: List[int] = []
appending_integers: Stream[int] = integers.foreach(state.append)
assert list(appending_integers) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
assert state == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Like
.map
it has an optionalconcurrency
parameter. Preserves the upstream order by default (FIFO), but you can setordered=False
for First Done First Out.
Like for
.map
, set the parametervia="process"
.
Like
.map
it has a sibling.aforeach
operation for async.
Keeps only the elements that satisfy a condition:
even_integers: Stream[int] = integers.filter(lambda n: n % 2 == 0)
assert list(even_integers) == [0, 2, 4, 6, 8]
Limits the number of yields
per_second
/per_minute
/per_hour
:
integers_5_per_sec: Stream[int] = integers.throttle(per_second=3)
# takes 3s: ceil(10 integers / 3 per_second) - 1
assert list(integers_5_per_sec) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
and/or ensures a minimum
interval
between two successive yields:
from datetime import timedelta
integers_every_100_millis = (
integers
.throttle(interval=timedelta(milliseconds=100))
)
# takes 900 millis: (10 integers - 1) * 100 millis
assert list(integers_every_100_millis) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Groups elements into
List
s:
integers_by_5: Stream[List[int]] = integers.group(size=5)
assert list(integers_by_5) == [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
integers_by_parity: Stream[List[int]] = integers.group(by=lambda n: n % 2)
assert list(integers_by_parity) == [[0, 2, 4, 6, 8], [1, 3, 5, 7, 9]]
from datetime import timedelta
integers_within_1_sec: Stream[List[int]] = (
integers
.throttle(per_second=2)
.group(interval=timedelta(seconds=0.99))
)
assert list(integers_within_1_sec) == [[0, 1, 2], [3, 4], [5, 6], [7, 8], [9]]
Mix the
size
/by
/interval
parameters:
integers_by_parity_by_2: Stream[List[int]] = (
integers
.group(by=lambda n: n % 2, size=2)
)
assert list(integers_by_parity_by_2) == [[0, 2], [1, 3], [4, 6], [5, 7], [8], [9]]
Like
.group
, but groups into(key, elements)
tuples:
integers_by_parity: Stream[Tuple[str, List[int]]] = (
integers
.groupby(lambda n: "odd" if n % 2 else "even")
)
assert list(integers_by_parity) == [("even", [0, 2, 4, 6, 8]), ("odd", [1, 3, 5, 7, 9])]
Tip
Then "star map" over the tuples:
from streamable import star
counts_by_parity: Stream[Tuple[str, int]] = (
integers_by_parity
.map(star(lambda parity, ints: (parity, len(ints))))
)
assert list(counts_by_parity) == [("even", 5), ("odd", 5)]
Ungroups elements assuming that they are
Iterable
s:
even_then_odd_integers: Stream[int] = integers_by_parity.flatten()
assert list(even_then_odd_integers) == [0, 2, 4, 6, 8, 1, 3, 5, 7, 9]
Flattens
concurrency
iterables concurrently:
mixed_ones_and_zeros: Stream[int] = (
Stream([[0] * 4, [1] * 4])
.flatten(concurrency=2)
)
assert list(mixed_ones_and_zeros) == [0, 1, 0, 1, 0, 1, 0, 1]
Catches a given type of exceptions, and optionally yields a
replacement
value:
inverses: Stream[float] = (
integers
.map(lambda n: round(1 / n, 2))
.catch(ZeroDivisionError, replacement=float("inf"))
)
assert list(inverses) == [float("inf"), 1.0, 0.5, 0.33, 0.25, 0.2, 0.17, 0.14, 0.12, 0.11]
You can specify an additional
when
condition for the catch:
import requests
from requests.exceptions import ConnectionError
status_codes_ignoring_resolution_errors: Stream[int] = (
Stream(["https://github.com", "https://foo.bar", "https://github.com/foo/bar"])
.map(requests.get, concurrency=2)
.catch(ConnectionError, when=lambda exception: "Max retries exceeded with url" in str(exception))
.map(lambda response: response.status_code)
)
assert list(status_codes_ignoring_resolution_errors) == [200, 404]
It has an optional
finally_raise: bool
parameter to raise the first catched exception when iteration ends.
Ends iteration once a given number of elements have been yielded:
five_first_integers: Stream[int] = integers.truncate(5)
assert list(five_first_integers) == [0, 1, 2, 3, 4]
... or when a condition has become satisfied:
five_first_integers: Stream[int] = integers.truncate(when=lambda n: n == 5)
assert list(five_first_integers) == [0, 1, 2, 3, 4]
Skips the first specified number of elements:
integers_after_five: Stream[int] = integers.skip(5)
assert list(integers_after_five) == [5, 6, 7, 8, 9]
Removes duplicates:
distinct_chars: Stream[str] = Stream("foobarfooo").distinct()
assert list(distinct_chars) == ["f", "o", "b", "a", "r"]
Specify a function to deduplicate based on the value it returns when applied to elements:
strings_of_distinct_lengths: Stream[str] = (
Stream(["a", "foo", "bar", "z"])
.distinct(len)
)
assert list(strings_of_distinct_lengths) == ["a", "foo"]
Warning
During iteration, all distinct elements that are yielded are retained in memory to perform deduplication. However, you can remove only consecutive duplicates without a memory footprint by setting consecutive_only=True
:
consecutively_distinct_chars: Stream[str] = (
Stream("foobarfooo")
.distinct(consecutive_only=True)
)
assert list(consecutively_distinct_chars) == ["f", "o", "b", "a", "r", "f", "o"]
Logs the progress of iterations:
>>> assert list(integers.throttle(per_second=2).observe("integers")) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
INFO: [duration=0:00:00.001793 errors=0] 1 integers yielded
INFO: [duration=0:00:00.004388 errors=0] 2 integers yielded
INFO: [duration=0:00:01.003655 errors=0] 4 integers yielded
INFO: [duration=0:00:03.003196 errors=0] 8 integers yielded
INFO: [duration=0:00:04.003852 errors=0] 10 integers yielded
Note
The amount of logs will never be overwhelming because they are produced logarithmically (base 2): the 11th log will be produced after 1,024 elements have been yielded, the 21th log after 1,048,576 elements, ...
Concatenates streams:
assert list(integers + integers) == [0, 1, 2, 3 ,4, 5, 6, 7, 8, 9, 0, 1, 2, 3 ,4, 5, 6, 7, 8, 9]
Tip
Use the standard zip
function:
from streamable import star
cubes: Stream[int] = (
Stream(zip(integers, integers, integers)) # Stream[Tuple[int, int, int]]
.map(star(lambda a, b, c: a * b * c)) # Stream[int]
)
assert list(cubes) == [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
Note
Although consuming the stream is beyond the scope of this library, it provides two basic shorthands to trigger an iteration:
Iterates over the stream until exhaustion and returns the number of elements yielded:
assert integers.count() == 10
Calling the stream iterates over it until exhaustion and returns it:
state: List[int] = []
appending_integers: Stream[int] = integers.foreach(state.append)
assert appending_integers() is appending_integers
assert state == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Tip
Custom ETL scripts can benefit from the expressiveness of this library. Below is a pipeline that extracts the 67 quadruped Pokémon from the first three generations using PokéAPI and loads them into a CSV:
import csv
from datetime import timedelta
import itertools
import requests
from streamable import Stream
with open("./quadruped_pokemons.csv", mode="w") as file:
fields = ["id", "name", "is_legendary", "base_happiness", "capture_rate"]
writer = csv.DictWriter(file, fields, extrasaction='ignore')
writer.writeheader()
pipeline: Stream = (
# Infinite Stream[int] of Pokemon ids starting from Pokémon #1: Bulbasaur
Stream(itertools.count(1))
# Limits to 16 requests per second to be friendly to our fellow PokéAPI devs
.throttle(per_second=16)
# GETs pokemons concurrently using a pool of 8 threads
.map(lambda poke_id: f"https://pokeapi.co/api/v2/pokemon-species/{poke_id}")
.map(requests.get, concurrency=8)
.foreach(requests.Response.raise_for_status)
.map(requests.Response.json)
# Stops the iteration when reaching the 1st pokemon of the 4th generation
.truncate(when=lambda poke: poke["generation"]["name"] == "generation-iv")
.observe("pokemons")
# Keeps only quadruped Pokemons
.filter(lambda poke: poke["shape"]["name"] == "quadruped")
.observe("quadruped pokemons")
# Catches errors due to None "generation" or "shape"
.catch(
TypeError,
when=lambda error: str(error) == "'NoneType' object is not subscriptable"
)
# Writes a batch of pokemons every 5 seconds to the CSV file
.group(interval=timedelta(seconds=5))
.foreach(writer.writerows)
.flatten()
.observe("written pokemons")
# Catches exceptions and raises the 1st one at the end of the iteration
.catch(finally_raise=True)
)
pipeline()
Tip
A Stream
can be visited via its .accept
method: implement a custom visitor by extending the abstract class streamable.visitors.Visitor
:
from streamable.visitors import Visitor
class DepthVisitor(Visitor[int]):
def visit_stream(self, stream: Stream) -> int:
if not stream.upstream:
return 1
return 1 + stream.upstream.accept(self)
def depth(stream: Stream) -> int:
return stream.accept(DepthVisitor())
assert depth(Stream(range(10)).map(str).filter()) == 3
Tip
The Stream
's methods are also exposed as functions:
from streamable.functions import catch
inverse_integers: Iterator[int] = map(lambda n: 1 / n, range(10))
safe_inverse_integers: Iterator[int] = catch(inverse_integers, ZeroDivisionError)
Tip
This mutes the .observe
operations which log at INFO
level:
import logging
logging.getLogger("streamable").setLevel(logging.WARNING)
Feel very welcome to: