Skip to content

Commit

Permalink
Merge pull request #44 from ECRL/dev
Browse files Browse the repository at this point in the history
Better implementation of TensorFlow 2.0
  • Loading branch information
tjkessler authored Jan 28, 2020
2 parents 5a989e2 + eff5dd3 commit 87e83e8
Show file tree
Hide file tree
Showing 22 changed files with 1,087 additions and 123 deletions.
465 changes: 465 additions & 0 deletions databases/cn_database_v2.0.csv

Large diffs are not rendered by default.

465 changes: 465 additions & 0 deletions databases/cn_database_v2.1.csv

Large diffs are not rendered by default.

3 changes: 0 additions & 3 deletions databases/kv_database_v1.0.csv

Large diffs are not rendered by default.

3 changes: 0 additions & 3 deletions databases/kv_database_v1.1.csv

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
# The short X.Y version
version = ''
# The full version, including alpha/beta/rc tags
release = '3.2.3'
release = '3.3.1'


# -- General configuration ---------------------------------------------------
Expand Down
2 changes: 1 addition & 1 deletion ecnet/__init__.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
from ecnet.server import Server
__version__ = '3.3.0'
__version__ = '3.3.1'
78 changes: 22 additions & 56 deletions ecnet/models/mlp.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# -*- coding: utf-8 -*-
#
# ecnet/models/mlp.py
# v.3.3.0
# v.3.3.1
# Developed in 2020 by Travis Kessler <[email protected]>
#
# Contains the "MultilayerPerceptron" (feed-forward neural network) class
Expand All @@ -13,13 +13,12 @@
from re import compile, IGNORECASE

# 3rd party imports
from h5py import File
from numpy import array, string_, zeros
from tensorflow import config, Tensor
from numpy import array
from tensorflow import config
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.layers import Dense
from tensorflow.keras.losses import MeanSquaredError
from tensorflow.keras.models import Model
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.optimizers import Adam

# ECNet imports
Expand All @@ -45,7 +44,7 @@ def check_h5(filename: str):
)


class MultilayerPerceptron(Model):
class MultilayerPerceptron:

def __init__(self, filename: str = 'model.h5'):
''' MultilayerPerceptron: Feed-forward neural network; variable number
Expand All @@ -56,10 +55,9 @@ def __init__(self, filename: str = 'model.h5'):
filename (str): filename/path for the model (default: `model.h5`)
'''

super(MultilayerPerceptron, self).__init__()
check_h5(filename)
self._filename = filename
self._layers = []
self._model = Sequential()

def add_layer(self, num_neurons: int, activation: str,
input_dim: int = None):
Expand All @@ -76,30 +74,16 @@ def add_layer(self, num_neurons: int, activation: str,
neurons), should be kept as `None` (default value)
'''

if len(self._layers) == 0:
if len(self._model.layers) == 0:
if input_dim is None:
raise ValueError('First layer must have input_dim specified')

self._layers.append(Dense(
self._model.add(Dense(
units=num_neurons,
activation=activation,
input_shape=(input_dim,)
input_dim=input_dim
))

def call(self, x: Tensor) -> Tensor:
''' call: used by Model.fit (parent) to perform feed-forward operations
Args:
x (tf.Tensor): data fed into first layer
Returns:
tf.Tensor: data resulting from last layer
'''

for layer in self._layers:
x = layer(x)
return x

def fit(self, l_x: array, l_y: array, v_x: array = None, v_y: array = None,
epochs: int = 1500, lr: float = 0.001, beta_1: float = 0.9,
beta_2: float = 0.999, epsilon: float = 0.0000001,
Expand Down Expand Up @@ -134,25 +118,25 @@ def fit(self, l_x: array, l_y: array, v_x: array = None, v_y: array = None,
epoch
'''

self.compile(optimizer=Adam(lr=lr, beta_1=beta_1, beta_2=beta_2,
epsilon=epsilon,
decay=decay),
loss=MeanSquaredError())
self._model.compile(optimizer=Adam(lr=lr, beta_1=beta_1, beta_2=beta_2,
epsilon=epsilon,
decay=decay),
loss=MeanSquaredError())

if v_x is not None and v_y is not None:

callback = EarlyStopping(monitor='val_loss', patience=patience,
restore_best_weights=True)
history = super().fit(l_x, l_y, batch_size=batch_size,
epochs=epochs, verbose=v,
callbacks=[callback],
validation_data=(v_x, v_y))
history = self._model.fit(l_x, l_y, batch_size=batch_size,
epochs=epochs, verbose=v,
callbacks=[callback],
validation_data=(v_x, v_y))
return (history.history['loss'], history.history['val_loss'])

else:

history = super().fit(l_x, l_y, batch_size=batch_size,
epochs=epochs, verbose=v)
history = self._model.fit(l_x, l_y, batch_size=batch_size,
epochs=epochs, verbose=v)
return (history.history['loss'], [None for _ in range(epochs)])

def use(self, x: array) -> array:
Expand All @@ -165,7 +149,7 @@ def use(self, x: array) -> array:
np.array: predicted values
'''

return self.predict(x)
return self._model.predict(x)

def save(self, filename: str = None):
''' save: saves the model weights, architecture to either the filename/
Expand All @@ -178,15 +162,7 @@ def save(self, filename: str = None):
if filename is None:
filename = self._filename
check_h5(filename)
self.save_weights(filename, save_format='h5')
input_size = self.layers[0].get_config()['batch_input_shape'][1]
layer_sizes = [l.get_config()['units'] for l in self.layers]
layer_activ = [l.get_config()['activation'] for l in self.layers]
with File(filename, 'a') as hf:
hf['mlp_input_size'] = input_size
hf['mlp_layer_sizes'] = layer_sizes
hf['mlp_layer_activ'] = string_(layer_activ)
hf.close()
self._model.save(filename, include_optimizer=False)
logger.log('debug', 'Model saved to {}'.format(filename),
call_loc='MLP')

Expand All @@ -201,16 +177,6 @@ def load(self, filename: str = None):

if filename is None:
filename = self._filename
with File(filename, 'r') as hf:
input_size = hf.get('mlp_input_size').value
layer_sizes = hf.get('mlp_layer_sizes').value
layer_activ = hf.get('mlp_layer_activ').value
hf.close()
self.add_layer(layer_sizes[0], layer_activ[0].decode('ascii'),
input_size)
for idx, layer in enumerate(layer_sizes[1:]):
self.add_layer(layer, layer_activ[idx].decode('ascii'))
self.build(input_shape=(None, input_size))
self.load_weights(filename)
self._model = load_model(filename, compile=False)
logger.log('debug', 'Model loaded from {}'.format(filename),
call_loc='MLP')
2 changes: 1 addition & 1 deletion ecnet/server.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# -*- coding: utf-8 -*-
#
# ecnet/server.py
# v.3.3.0
# v.3.3.1
# Developed in 2020 by Travis Kessler <[email protected]>
#
# Contains the "Server" class, which handles ECNet project creation, neural
Expand Down
2 changes: 1 addition & 1 deletion ecnet/tasks/limit_inputs.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# -*- coding: utf-8 -*-
#
# ecnet/tasks/limit_inputs.py
# v.3.3.0
# v.3.3.1
# Developed in 2020 by Travis Kessler <[email protected]>
#
# Contains functions for selecting influential input parameters
Expand Down
2 changes: 1 addition & 1 deletion ecnet/tasks/training.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# -*- coding: utf-8 -*-
#
# ecnet/tasks/training.py
# v.3.3.0
# v.3.3.1
# Developed in 2020 by Travis Kessler <[email protected]>
#
# Contains function for project training (multiprocessed training)
Expand Down
2 changes: 1 addition & 1 deletion ecnet/tasks/tuning.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# -*- coding: utf-8 -*-
#
# ecnet/tasks/tuning.py
# v.3.3.0
# v.3.3.1
# Developed in 2020 by Travis Kessler <[email protected]>
#
# Contains functions/fitness functions for tuning hyperparameters
Expand Down
2 changes: 1 addition & 1 deletion ecnet/tools/database.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# -*- coding: utf-8 -*-
#
# ecnet/tools/database.py
# v.3.3.0
# v.3.3.1
# Developed in 2020 by Travis Kessler <[email protected]>
#
# Contains functions for creating ECNet-formatted databases
Expand Down
2 changes: 1 addition & 1 deletion ecnet/tools/plotting.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# -*- coding: utf-8 -*-
#
# ecnet/tools/plotting.py
# v.3.3.0
# v.3.3.1
# Developed in 2020 by Travis Kessler <[email protected]>
#
# Contains functions/classes for creating various plots
Expand Down
108 changes: 87 additions & 21 deletions ecnet/tools/project.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,22 +2,92 @@
# -*- coding: utf-8 -*-
#
# ecnet/tools/project.py
# v.3.3.0
# v.3.3.1
# Developed in 2020 by Travis Kessler <[email protected]>
#
# Contains functions for predicting data using pre-existing .prj files
#

# Stdlib imports
from datetime import datetime
from os import remove
from shutil import rmtree
from os import walk
from os.path import basename, join
from re import compile, IGNORECASE
from tempfile import TemporaryDirectory
from warnings import warn
from zipfile import ZipFile

# 3rd party imports
from alvadescpy import smiles_to_descriptors
from numpy import asarray, mean
from padelpy import from_smiles

# ECNet imports
from ecnet import Server
from ecnet.utils.data_utils import DataFrame
from ecnet.utils.logging import logger
from ecnet.tools.database import create_db
from ecnet.models.mlp import MultilayerPerceptron
from ecnet.utils.server_utils import open_config, open_df

CONFIG_RE = compile(r'^.*\.yml$', IGNORECASE)
MODEL_RE = compile(r'^.*\.h5$', IGNORECASE)


class TrainedProject:

def __init__(self, filename: str):
''' TrainedProject: loads a trained ECNet project, including last-used
DataFrame, configuration .yml file, and all trained models
Args:
filename (str): name/path of the trained .prj file
'''

self._df = None
self._config = None
self._models = []

with ZipFile(filename, 'r') as zf:
prj_zip = zf.namelist()
with TemporaryDirectory() as tmpdirname:
zf.extractall(tmpdirname)
prj_dirname = join(tmpdirname, basename(
filename.replace('.prj', '')
))
self._df = open_df(join(prj_dirname, 'data.d'))
for root, _, files in walk(prj_dirname):
for f in files:
if MODEL_RE.match(f) is not None:
_model = MultilayerPerceptron(join(root, f))
_model.load()
self._models.append(_model)
elif CONFIG_RE.match(f) is not None:
self._config = open_config(join(root, f))

def use(self, smiles: list, backend: str = 'padel'):
''' use: uses the trained project to predict values for supplied
molecules
Args:
smiles (list): list of SMILES strings to predict for
backend (str): backend software to use for QSPR generation; `padel`
or `alvadesc`; default = `padel`; alvadesc requries valid
license
Returns:
numpy.array: predicted values
'''

if backend == 'alvadesc':
mols = [smiles_to_descriptors(s) for s in smiles]
for mol in mols:
for key in list(mol.keys()):
if mol[key] == 'na':
mol[key] = 0
elif backend == 'padel':
mols = [from_smiles(s) for s in smiles]
else:
raise ValueError('Unknown backend software: {}'.format(backend))
return mean([model.use(asarray(
[[float(mol[name]) for name in self._df._input_names]
for mol in mols]
)) for model in self._models], axis=0)


def predict(smiles: list, prj_file: str, results_file: str = None,
Expand All @@ -29,23 +99,19 @@ def predict(smiles: list, prj_file: str, results_file: str = None,
smiles (str): SMILES strings for molecules
prj_file (str): path to ECNet .prj file
results_file (str): if not none, saves results to this CSV file
(WARNING: depricated, no longer saves to file)
backend (str): `padel` (default) or `alvadesc`, depending on the data
your project was trained with
Returns:
list: predicted values
'''

sv = Server(prj_file=prj_file)

timestamp = datetime.now().strftime('%Y%m%d%H%M%S%f')[:-3]
create_db(smiles, '{}.csv'.format(timestamp), backend=backend)
new_data = DataFrame('{}.csv'.format(timestamp))
new_data.set_inputs(sv._df._input_names)
new_data.create_sets()
sv._df = new_data
sv._sets = sv._df.package_sets()
results = sv.use(output_filename=results_file)
remove('{}.csv'.format(timestamp))
rmtree(prj_file.replace('.prj', ''))
return results
if results_file is not None:
class NotImplementedWarning(UserWarning):
pass
warn('`predict` no longer saves directly to a file, results are only'
' returned to the user', NotImplementedWarning)

project = TrainedProject(prj_file)
return project.use(smiles, backend)
2 changes: 1 addition & 1 deletion ecnet/utils/data_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# -*- coding: utf-8 -*-
#
# ecnet/utils/data_utils.py
# v.3.3.0
# v.3.3.1
# Developed in 2020 by Travis Kessler <[email protected]>
#
# Contains functions/classes for loading data, saving data, saving results
Expand Down
2 changes: 1 addition & 1 deletion ecnet/utils/error_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# -*- coding: utf-8 -*-
#
# ecnet/utils/error_utils.py
# v.3.3.0
# v.3.3.1
# Developed in 2020 by Travis Kessler <[email protected]>
#
# Contains functions for error calculations
Expand Down
2 changes: 1 addition & 1 deletion ecnet/utils/logging.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# -*- coding: utf-8 -*-
#
# ecnet/utils/logging.py
# v.3.3.0
# v.3.3.1
# Developed in 2020 by Travis Kessler <[email protected]>
#
# Contains logger used by ECNet
Expand Down
Loading

0 comments on commit 87e83e8

Please sign in to comment.