Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update acquisition cost implementation #479

Merged
merged 6 commits into from
Apr 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
Changelog
=========

- Add option to use additive or multiplicative adjustment in any acquisition method
- Add `arziv`-mocking to rtd-setup
- Add convenience method for obtaining elfi samples as `InferenceData`` to be used with `arviz`
- Improve `randmaxvar` batch acquisitions and initialisation by enabling sampling from prior
Expand Down
14 changes: 2 additions & 12 deletions elfi/methods/bo/acquisition.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
import scipy.stats as ss

import elfi.methods.mcmc as mcmc
from elfi.methods.bo.utils import CostFunction, minimize
from elfi.methods.bo.utils import minimize
from elfi.methods.utils import resolve_sigmas

logger = logging.getLogger(__name__)
Expand Down Expand Up @@ -223,16 +223,14 @@ class LCBSC(AcquisitionBase):

"""

def __init__(self, *args, delta=None, additive_cost=None, **kwargs):
def __init__(self, *args, delta=None, **kwargs):
"""Initialize LCBSC.

Parameters
----------
delta: float, optional
In between (0, 1). Default is 1/exploration_rate. If given, overrides the
exploration_rate.
additive_cost: CostFunction, optional
Cost function output is added to the base acquisition value.

"""
if delta is not None:
Expand All @@ -244,10 +242,6 @@ def __init__(self, *args, delta=None, additive_cost=None, **kwargs):
self.name = 'lcbsc'
self.label_fn = 'Confidence Bound'

if additive_cost is not None and not isinstance(additive_cost, CostFunction):
raise TypeError("Additive cost must be type CostFunction.")
self.additive_cost = additive_cost

@property
def delta(self):
"""Return the inverse of exploration rate."""
Expand Down Expand Up @@ -275,8 +269,6 @@ def evaluate(self, x, t=None):
"""
mean, var = self.model.predict(x, noiseless=True)
value = mean - np.sqrt(self._beta(t) * var)
if self.additive_cost is not None:
value += self.additive_cost.evaluate(x)
return value

def evaluate_gradient(self, x, t=None):
Expand All @@ -296,8 +288,6 @@ def evaluate_gradient(self, x, t=None):
mean, var = self.model.predict(x, noiseless=True)
grad_mean, grad_var = self.model.predictive_gradients(x)
value = grad_mean - 0.5 * grad_var * np.sqrt(self._beta(t) / var)
if self.additive_cost is not None:
value += self.additive_cost.evaluate_gradient(x)
return value


Expand Down
80 changes: 72 additions & 8 deletions elfi/methods/bo/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,28 +111,28 @@ def minimize(fun,
return locs[ind_min], vals[ind_min]


class CostFunction:
"""Convenience class for modelling acquisition costs."""
class AdjustmentFunction:
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why have AdjustmentFunctionclass and then define the maker functions later on that return classes defined with the scope of the maker functions?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

the maker functions were needed to make new acquisition classes that inherit from the base acquisition class that is given as input. the functions currently take as input the base acquisition class and an AdjustmentFunction instance, but i could also remove this convenience class and have make_additive_acq and make_multiplicative_acq take as input the callable that we want to use as additive or multiplicative term and the callable that returns its gradient. is that what you meant?

"""Convenience class for modelling acquisition function adjustments."""

def __init__(self, function, gradient, scale=1):
"""Initialise CostFunction.
"""Initialise AdjustmentFunction.

Parameters
----------
function : callable
Function that returns cost function value.
Function that returns adjustment function value.
gradient : callable
Function that returns cost function gradient.
Function that returns adjustment function gradient.
scale : float, optional
Cost function is multiplied with scale.
Adjustment function is multiplied with scale.

"""
self.function = function
self.gradient = gradient
self.scale = scale

def evaluate(self, x):
"""Return cost function value evaluated at x.
"""Return adjustment function value evaluated at x.

Parameters
----------
Expand All @@ -148,7 +148,7 @@ def evaluate(self, x):
return self.scale * self.function(x).reshape(n, 1)

def evaluate_gradient(self, x):
"""Return cost function gradient evaluated at x.
"""Return adjustment function gradient evaluated at x.

Parameters
----------
Expand All @@ -162,3 +162,67 @@ def evaluate_gradient(self, x):
x = np.atleast_2d(x)
n, input_dim = x.shape
return self.scale * self.gradient(x).reshape(n, input_dim)


def make_additive_acq(acquisition_class, function):
"""Make acquisition function adjusted with an additive term.

Parameters
----------
acquisition_class : Type[elfi.methods.bo.acquisition.AcquisitionBase]
Acquisition function to be adjusted.
function : AdjustmentFunction
Function added to the base acquisition function.

Returns
-------
Type[AdjustedAcquisition]

"""
class AdjustedAcquisition(acquisition_class):

def __init__(self, model, **kwargs):
super().__init__(model=model, **kwargs)
self._func = function

def evaluate(self, theta_new, t=None):
return super().evaluate(theta_new, t=t) + self._func.evaluate(theta_new)

def evaluate_gradient(self, theta_new, t=None):
t1 = super().evaluate_gradient(theta_new, t=t)
t2 = self._func.evaluate_gradient(theta_new)
return t1 + t2

return AdjustedAcquisition


def make_multiplicative_acq(acquisition_class, function):
"""Make acquisition function adjusted with a multiplictive term.

Parameters
----------
acquisition_class : Type[elfi.methods.bo.acquisition.AcquisitionBase]
Acquisition function to be adjusted.
function : AdjustmentFunction
Function that multiplies the base acquisition function.

Returns
-------
Type[AdjustedAcquisition]

"""
class AdjustedAcquisition(acquisition_class):

def __init__(self, model, **kwargs):
super().__init__(model=model, **kwargs)
self._func = function

def evaluate(self, theta_new, t=None):
return super().evaluate(theta_new, t=t) * self._func.evaluate(theta_new)

def evaluate_gradient(self, theta_new, t=None):
t1 = super().evaluate_gradient(theta_new, t=t) * self._func.evaluate(theta_new)
t2 = super().evaluate(theta_new, t=t) * self._func.evaluate_gradient(theta_new)
return t1 + t2

return AdjustedAcquisition
19 changes: 10 additions & 9 deletions elfi/methods/inference/bolfire.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
from elfi.loader import get_sub_seed
from elfi.methods.bo.acquisition import LCBSC, AcquisitionBase
from elfi.methods.bo.gpy_regression import GPyRegression
from elfi.methods.bo.utils import CostFunction
from elfi.methods.bo.utils import AdjustmentFunction, make_additive_acq
from elfi.methods.classifier import Classifier, LogisticRegression
from elfi.methods.inference.parameter_inference import ModelBased
from elfi.methods.posteriors import BOLFIREPosterior
Expand Down Expand Up @@ -333,14 +333,15 @@ def _resolve_target_model(self, target_model):
def _resolve_acquisition_method(self, acquisition_method):
"""Resolve acquisition method."""
if acquisition_method is None:
# Model prior log-probabilities as an additive cost
cost = CostFunction(self.prior.logpdf, self.prior.gradient_logpdf, scale=-1)
return LCBSC(model=self.target_model,
prior=self.prior,
noise_var=self.acq_noise_var,
exploration_rate=self.exploration_rate,
seed=self.seed,
additive_cost=cost)
# LCBSC with prior log-probabilities as an additive term
prior_term = AdjustmentFunction(self.prior.logpdf, self.prior.gradient_logpdf,
scale=-1)
acq_method = make_additive_acq(LCBSC, prior_term)
return acq_method(model=self.target_model,
prior=self.prior,
noise_var=self.acq_noise_var,
exploration_rate=self.exploration_rate,
seed=self.seed)
if isinstance(acquisition_method, AcquisitionBase):
return acquisition_method
raise TypeError('acquisition_method must be an instance of AcquisitionBase.')
Expand Down
92 changes: 86 additions & 6 deletions tests/unit/test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,8 @@

import elfi
from elfi.examples.ma2 import get_model
from elfi.methods.bo.utils import CostFunction, minimize, stochastic_optimization
from elfi.methods.bo.utils import (AdjustmentFunction, minimize, stochastic_optimization,
make_additive_acq, make_multiplicative_acq)
from elfi.methods.density_ratio_estimation import DensityRatioEstimation
from elfi.methods.utils import (GMDistribution, normalize_weights, numgrad, numpy_to_python_type,
sample_object_to_dict, weighted_sample_quantile, weighted_var)
Expand Down Expand Up @@ -283,20 +284,99 @@ def test_ratio_estimation(self):
assert np.max(np.abs(test_w - test_w_estim)) < 0.1
assert np.abs(np.max(test_w) - densratio.max_ratio()) < 0.1

class TestCostFunction:

class TestAdjustmentFunction:
def test_evaluate(self):
def fun(x):
return x[0]**2 + (x[1] - 1)**4

cost = CostFunction(elfi.tools.vectorize(fun), None, scale=10)
adjustment = AdjustmentFunction(elfi.tools.vectorize(fun), None, scale=10)
x = np.array([0.5, 0.5])
assert np.isclose(10 * fun(x), cost.evaluate(x))
assert np.isclose(10 * fun(x), adjustment.evaluate(x))

def test_evaluate_gradient(self):
def grad(x):
return np.array([2 * x[0], 4 * (x[1] - 1)**3])

cost = CostFunction(None, elfi.tools.vectorize(grad), scale=10)
adjustment = AdjustmentFunction(None, elfi.tools.vectorize(grad), scale=10)
x = np.array([0.5, 0.5])
assert np.allclose(10 * grad(x), cost.evaluate_gradient(x))
assert np.allclose(10 * grad(x), adjustment.evaluate_gradient(x))


class TestAdjustedAcquisition:
class CustomAcquisition(elfi.methods.bo.acquisition.AcquisitionBase):
def __init__(self, model, scale=1):
self.model = model
self.scale = scale

def evaluate(self, x, t=None):
return self.scale * x * np.sin(x)

def evaluate_gradient(self, x, t=None):
return self.scale * (np.sin(x) + x * np.cos(x))

def minimize(self):
return minimize(self.evaluate, ((0, 10), ), grad=self.evaluate_gradient)

def get_adjustment(self, scale):
def func(x):
return scale * x

def grad(x):
return scale * np.ones_like(x)

return AdjustmentFunction(func, grad)

def test_evaluate_additive(self):
acq = self.CustomAcquisition(None, scale=-1)
adj = self.get_adjustment(0.5)
adjusted_acq = make_additive_acq(self.CustomAcquisition, adj)(None, scale=-1)
x = np.arange(10).reshape(10, 1)
y = acq.evaluate(x) + adj.evaluate(x)
test_y = adjusted_acq.evaluate(x)
assert np.allclose(test_y, y)

def test_evaluate_gradient_additive(self):
acq = self.CustomAcquisition(None, scale=-1)
adj = self.get_adjustment(0.5)
adjusted_acq = make_additive_acq(self.CustomAcquisition, adj)(None, scale=-1)
x = np.arange(10).reshape(10, 1)
y = acq.evaluate_gradient(x) + adj.evaluate_gradient(x)
test_y = adjusted_acq.evaluate_gradient(x)
assert np.allclose(test_y, y)

def test_minimize_additive(self):
acq = self.CustomAcquisition(None, scale=-1)
loc1, val1 = acq.minimize()
adj = self.get_adjustment(0.5)
adjusted_acq = make_additive_acq(self.CustomAcquisition, adj)(None, scale=-1)
loc2, val2 = adjusted_acq.minimize()
assert loc1 > loc2
assert val1 < val2

def test_evaluate_multiplicative(self):
acq = self.CustomAcquisition(None, scale=-1)
adj = self.get_adjustment(0.1)
adjusted_acq = make_multiplicative_acq(self.CustomAcquisition, adj)(None, scale=-1)
x = np.arange(10).reshape(10, 1)
y = acq.evaluate(x) * adj.evaluate(x)
test_y = adjusted_acq.evaluate(x)
assert np.allclose(test_y, y)

def test_evaluate_gradient_multiplicative(self):
acq = self.CustomAcquisition(None, scale=-1)
adj = self.get_adjustment(0.1)
adjusted_acq = make_multiplicative_acq(self.CustomAcquisition, adj)(None, scale=-1)
x = np.arange(10).reshape(10, 1)
y = acq.evaluate(x) * adj.evaluate_gradient(x) + acq.evaluate_gradient(x) * adj.evaluate(x)
test_y = adjusted_acq.evaluate_gradient(x)
assert np.allclose(test_y, y)

def test_minimize_multiplicative(self):
acq = self.CustomAcquisition(None, scale=-1)
loc1, val1 = acq.minimize()
adj = self.get_adjustment(0.1)
adjusted_acq = make_multiplicative_acq(self.CustomAcquisition, adj)(None, scale=-1)
loc2, val2 = adjusted_acq.minimize()
assert loc1 < loc2
assert val1 < val2
Loading