-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
19 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# Con paciencia y saliva, resolvió el problema computacional la hormiga | ||
|
||
## Authors | ||
|
||
Antonio Mora, Universidad de Granada | ||
|
||
## Presenter | ||
|
||
Antonio Mora, Universidad de Granada | ||
|
||
## Resumen | ||
|
||
Dentro de la Inteligencia Artificial y, en concreto, de la Inteligencia Computacional, existen multitud de algoritmos bioinspirados, los cuales se pueden aplicar a una gran diversidad de problemas computacionales de distinta naturaleza (clasificación, búsqueda, optimización). Entre dichos algoritmos, una de las familias más longevas y eficientes, son los Algoritmos de Optimización basada en Colonias de Hormigas (OCH, o ACO, por sus siglas en inglés: Ant Colony Optimization). Sin embargo, aún teniendo ya más de 30 años, estas metaheurísticas todavía siguen siendo desconocidos para muchos investigadores e ingenieros que trabajan en problemas computacionales. | ||
En esta charla describiremos brevemente estos algoritmos y presentaremos algunas de sus aplicaciones en problemas de varios tipos, incluyendo una aproximación para clasificación y clustering de datos y otra para resolver un problema actual de optimización dentro de redes definidas por software (SDNs). | ||
|
||
|
||
## Abstract | ||
|
||
Within Artificial Intelligence, and specifically within Computational Intelligence, there are numerous bioinspired algorithms that can be applied to a wide variety of computational problems of different natures (classification, search, optimization). Among these algorithms, one of the most long-standing and efficient families is the Ant Colony Optimization algorithms (ACO). However, despite having more than 30 years of history, these metaheuristics are still unfamiliar to many researchers and engineers working on computational problems. In this talk, we will briefly describe these algorithms and present some of their applications in various types of problems, including an approach for data classification and clustering, as well as a solution for a current optimization problem within software-defined networks (SDNs). |