Skip to content

essicolo/seekwellpandas

Repository files navigation

Seek well, pandas

seekwellpandas (SQL-pandas) is a pandas extension that provides SQL-inspired methods to manipulate DataFrames in a more intuitive way, closely resembling SQL syntax.

Features

seekwellpandas adds the following methods to your pandas DataFrames:

  • select(): Select specific columns, including negative selection.
  • where_(): Filter rows based on a condition.
  • group_by(): Group data by one or more columns.
  • having(): Filter groups based on a condition.
  • order_by(): Sort data by one or more columns.
  • limit(): Limit the number of returned rows.
  • join_(): Join two DataFrames.
  • union(): Union two DataFrames.
  • distinct(): Remove duplicates.
  • intersect(): Find the intersection between two DataFrames.
  • difference(): Find the difference between two DataFrames.
  • with_column(): Add a new column based on an expression.
  • rename_column(): Rename a column.
  • cast(): Change the data type of a column.
  • drop_column(): Remove one or more columns.
  • unpivot(): Transform columns into rows (melt).
  • group_having(): Combine grouping and group filtering.

Installation

You can install seekwellpandas via pip:

pip install seekwellpandas

Usage

Here are some examples of how to use SeekwellPandas:

import pandas as pd
import seekwellpandas

# Create a sample DataFrame
df = pd.DataFrame({
    'A': [1, 2, 3, 4],
    'B': ['a', 'b', 'a', 'b'],
    'C': [10, 20, 30, 40]
})

# Select columns
result = df.select('A', 'B')

# Negative selection
result = df.select('-A')

# Filter rows redirecting to .query() (the _ avoids overlapping with pandas.DataFrame.where)
result = df.where_('A > 2')

# Group and aggregate
result = df.group_by('B').agg({'A': 'mean', 'C': 'sum'})

# Sort data
result = df.order_by('C', ascending=False)

# Add a new column
result = df.with_column('D', 'A * C')

# Join two DataFrames (the _ avoids overlapping with pandas.DataFrame.join)
df2 = pd.DataFrame({'B': ['a', 'b'], 'D': [100, 200]})
result = df.join_(df2, on='B')

Contributing

Contributions are welcome! Feel free to open an issue or submit a pull request on my GitHub repository.

License

This project is licensed under the GPLv3 License. See the LICENSE file for details.