Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add bpb and n_bytes to metric logging #41

Merged
merged 1 commit into from
Feb 7, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -167,3 +167,4 @@ figures/
.DS_Store
internal/
jobs_parallel-copy/
wandb/
16 changes: 13 additions & 3 deletions bytelatent/distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,6 +127,16 @@ def dist_max(x: Union[int, float], mesh: DeviceMesh = None):
return tensor


def dist_sum(
x: Union[int, float], mesh: DeviceMesh = None, reduce_dtype: torch.dtype = None
):
tensor = torch.tensor(x).cuda()
if reduce_dtype is not None:
tensor = tensor.to(reduce_dtype)
dist.all_reduce(tensor, op=ReduceOp.SUM, group=mesh.get_group() if mesh else None)
return tensor


def dist_mean(x: Union[int, float], mesh: DeviceMesh = None):
tensor = torch.tensor(x).cuda()
dist.all_reduce(tensor, op=ReduceOp.AVG, group=mesh.get_group() if mesh else None)
Expand Down Expand Up @@ -236,7 +246,7 @@ def setup_env(env_args: EnvironmentArgs):
logger.warning(f"WARNING: Setting {name} to {value}")


def setup_torch_distributed(dist_args):
def setup_torch_distributed(dist_args: DistributedArgs):
"""
Handle single and multi-GPU / multi-node / SLURM jobs.
Initialize the following variables:
Expand Down Expand Up @@ -388,14 +398,14 @@ def clean_env():


def parallelize_model(
model,
model: torch.nn.Module,
device_mesh,
model_args,
distributed_args: DistributedArgs,
fsdp_grouping_plan: Optional[List[Tuple[str, bool]]] = None,
tp_parallelize=None,
no_recompute_ops=None,
):
) -> torch.nn.Module:
if distributed_args.tp_size > 1:
assert (
distributed_args.fsdp_type == "full_shard"
Expand Down
1 change: 0 additions & 1 deletion bytelatent/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,6 @@ class LoggingArgs(BaseModel):
model_config = ConfigDict(extra="forbid")
freq: int = 10 # Log every freq optimizer steps
acc_freq: int | None = None # Log every acc_freq gradient accumulation steps

wandb: WandbArgs | None = None


Expand Down
134 changes: 109 additions & 25 deletions bytelatent/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@

import gc
import logging
import math
import os
import sys
from contextlib import ExitStack
Expand All @@ -11,6 +12,7 @@
from timeit import default_timer as timer
from typing import Any, TypeVar

import numpy as np
import torch
import torch.distributed
import torch.nn.functional
Expand All @@ -32,7 +34,9 @@
from bytelatent.distributed import (
check_model_value_range,
clean_env,
dist_mean,
dist_mean_dict,
dist_sum,
get_device_mesh,
get_is_master,
get_world_size,
Expand Down Expand Up @@ -392,6 +396,9 @@ def train(args: TrainArgs):
time_last_log = timer()
gc.collect()
saved = False
step_losses: list[float] = []
step_tok_losses: list[float] = []
n_bytes: int = 0
while train_state.step < args.steps and (
args.max_steps is None or train_state.step < args.max_steps
):
Expand All @@ -413,6 +420,21 @@ def train(args: TrainArgs):
batch_patch_lengths = torch.from_numpy(batch.patch_lengths).cuda()
mask = None if batch.mask is None else torch.from_numpy(batch.mask).cuda()

if args.data.tokenizer_args.name in ["bytes", "blt"]:
n_bytes += batch_y.numel() if mask is None else mask.sum()
elif args.data.tokenizer_args.name in ["sp", "tiktoken"]:
for example in batch.y:
target_tokens = tokenizer.decode(example.tolist(), cut_at_eos=False)
n_bytes += (
len(bytes(target_tokens, encoding="utf-8", errors="ignore"))
+ sum(example == tokenizer.eos_id)
+ sum(example == tokenizer.bos_id)
)
else:
raise ValueError(
f"Unexpected tokenizer to count n_bytes for: {args.data.tokenizer_args.name}"
)

if (
not args.train_entropy_model
and args.model.encoder_enable_byte_ngrams
Expand Down Expand Up @@ -487,7 +509,7 @@ def train(args: TrainArgs):
batch_x, patch_lengths=batch_patch_lengths, ngram_ids=ngram_ids
)

loss, _ = compute_loss(pred, batch_y, mask, train_state.scale)
loss, tok_loss = compute_loss(pred, batch_y, mask, train_state.scale)

# We scale loss with grad_acc_steps so the gradient is the same
# regardless of grad_acc_steps
Expand All @@ -498,6 +520,10 @@ def train(args: TrainArgs):
# For logging we undo that scaling
loss = loss.detach() * args.grad_acc_steps

# Undo loss scaling so downstream down't need to worry about it
step_losses.append((loss / train_state.scale).item())
step_tok_losses.append(tok_loss / train_state.scale)

world_size = get_world_size()
if 1 < world_size <= 8:
# For some reason, there are errors in reduces due to
Expand Down Expand Up @@ -568,50 +594,108 @@ def train(args: TrainArgs):
* wps
)

metrics = flatten_dict(
{
"global_step": train_state.step,
"acc_step": train_state.acc_step,
"speed": {
"wps": wps,
"FLOPS": FLOPS,
"curr_iter_time": curr_iter_time,
"data_load_time": data_load_time,
},
"optim": {
"grad_norm": grad_norm,
"lr": curr_lr,
"total_tokens": total_tokens,
},
"memory": gpu_mem_stats._asdict(),
# Below, semantics are:
# per_gpu: Metrics on a given rank
# across_gpus: Metrics averaged/summed across all ranks
# step: Metric at a step
# interval: Metric averaged/summed across all steps since the last log interval.
# Typically, this is 10
step_loss_per_gpu = loss.item()
step_loss_across_gpus = dist_mean(step_loss_per_gpu).item()
interval_loss_per_gpu = np.mean(step_losses).item()
interval_loss_across_gpus = dist_mean(interval_loss_per_gpu).item()

stacked_tok_loss = torch.cat(step_tok_losses, dim=0)
interval_total_tok_loss_per_gpu = stacked_tok_loss.sum().item()
interval_total_tok_loss_across_gpus = dist_sum(
interval_total_tok_loss_per_gpu, reduce_dtype=torch.bfloat16
).item()
interval_total_n_bytes_per_gpu = n_bytes
interval_total_n_bytes_across_gpus = dist_sum(
n_bytes, reduce_dtype=torch.bfloat16
).item()

interval_bpb_per_gpu = (
interval_total_tok_loss_per_gpu
/ math.log(2)
/ interval_total_n_bytes_per_gpu
)
interval_bpb_across_gpus = (
interval_total_tok_loss_across_gpus
/ math.log(2)
/ interval_total_n_bytes_across_gpus
)

metric_dict = {
"global_step": train_state.step,
"acc_step": train_state.acc_step,
"speed": {
"wps": wps,
"FLOPS": FLOPS,
"curr_iter_time": curr_iter_time,
"data_load_time": data_load_time,
},
"optim": {
"grad_norm": grad_norm,
"lr": curr_lr,
"total_tokens": total_tokens,
},
"memory": gpu_mem_stats._asdict(),
"loss": {
"step_per_gpu": step_loss_per_gpu,
"step_across_gpu": step_loss_across_gpus,
"interval_per_gpu": interval_loss_per_gpu,
"interval_across_gpu": interval_loss_across_gpus,
},
"bpb": {
"interval_per_gpu": interval_bpb_per_gpu,
"interval_across_gpus": interval_bpb_across_gpus,
},
"n_bytes": {
"interval_per_gpu": interval_total_n_bytes_per_gpu,
"interval_across_gpus": interval_total_n_bytes_across_gpus,
},
}

metrics = flatten_dict(
metric_dict,
sep="/",
)

to_sync = {}
to_sync["loss/out"] = loss.item()
metrics.update(dist_mean_dict(to_sync))

if get_is_master():
metric_logger.log(metrics)

gpu_memory_monitor.reset_peak_stats()
nwords_since_last_log = 0
time_last_log = timer()
# Below semantics are:
# step=Metrics at a step
# interval=Metrics averaged across the logging interval
# local=On one rank
# global=Across all ranks
logger.info(
f"step: {train_state.step}"
f" acc: {train_state.acc_step}"
f" loss: {round(loss.item(),4):>7}"
f" loss_gpu: {round(interval_loss_per_gpu, 4):>7}"
f" loss_avg: {round(interval_loss_across_gpus, 4):>7}"
f" bpb_gpu: {interval_bpb_per_gpu:3f}"
f" bpb_avg: {interval_bpb_across_gpus:3f}"
f" grad: {grad_norm:.2e}"
f" flops: {FLOPS:.2e}"
f" wps: {wps:.2e}"
f" iter: {curr_iter_time:>7}"
f" data: {data_load_time:>5}"
f" lr: {curr_lr:.2e}"
f" n_bytes_gpu: {int(interval_total_n_bytes_per_gpu)}"
f" n_bytes_sum: {int(interval_total_n_bytes_across_gpus)}"
f" mem: {gpu_mem_stats.max_active_pct:.0f}%"
f" pow: {gpu_mem_stats.power_draw/1000} W"
)

n_bytes = 0
step_losses = []
step_tok_losses = []
gpu_memory_monitor.reset_peak_stats()
nwords_since_last_log = 0
time_last_log = timer()

if every_n_steps(
train_state, args.checkpoint.dump.every, acc_step=0
) or every_n_steps(train_state, args.checkpoint.eval.every, acc_step=0):
Expand Down