Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add code for LDM #496

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
412 changes: 412 additions & 0 deletions tests/diffusion_labs/test_ldm.py

Large diffs are not rendered by default.

180 changes: 180 additions & 0 deletions tests/diffusion_labs/test_ldm_spatial_transformer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

from copy import deepcopy
from functools import partial

import pytest
import torch
from tests.test_utils import assert_expected, set_rng_seed
from torch import nn
from torchmultimodal.diffusion_labs.models.ldm.spatial_transformer import (
SpatialTransformer,
SpatialTransformerCrossAttentionLayer,
)


@pytest.fixture(autouse=True)
def set_seed():
set_rng_seed(54321)


@pytest.fixture
def in_channels():
return 16


@pytest.fixture
def num_heads():
return 2


@pytest.fixture
def num_layers():
return 3


@pytest.fixture
def context_dim():
return 8


@pytest.fixture
def batch_size():
return 3


@pytest.fixture
def x(batch_size, in_channels):
return torch.randn(batch_size, 10, in_channels)


@pytest.fixture
def x_img(batch_size, in_channels):
return torch.randn(batch_size, in_channels, 8, 8)


@pytest.fixture
def context(batch_size, context_dim):
return torch.randn(batch_size, 6, context_dim)


# All expected values come after first testing that SpatialTransformerCrossAttentionLayer
# has the exact output as the corresponding class in d2go, then simply
# forward passing SpatialTransformerCrossAttentionLayer with params, random seed, and
# initialization order in this file.
class TestSpatialTransformerCrossAttentionLayer:
@pytest.fixture
def attn(self, in_channels, num_heads):
return partial(
SpatialTransformerCrossAttentionLayer,
d_model=in_channels,
num_heads=num_heads,
)

def test_cross_attn_forward_with_context(self, attn, x, context_dim, context):
attn_module = attn(context_dim=context_dim)
actual = attn_module(x, context)
expected = torch.tensor(46.95579)
assert_expected(actual.sum(), expected, rtol=0, atol=1e-4)

def test_cross_attn_forward_without_context(self, attn, in_channels, x):
attn_module = attn(context_dim=in_channels)
actual = attn_module(x)
expected = torch.tensor(5.83984)
assert_expected(actual.sum(), expected, rtol=0, atol=1e-4)

def test_self_attn_forward(self, attn, x, context):
attn_module = attn()
actual = attn_module(x)
expected = torch.tensor(-1.7353)
assert_expected(actual.sum(), expected, rtol=0, atol=1e-4)
actual = attn_module(x, context)
assert_expected(actual.sum(), expected, rtol=0, atol=1e-4)


# All expected values come after first testing that SpatialTransformer
# has the exact output as the corresponding class in d2go, then simply
# forward passing SpatialTransformer with params, random seed, and
# initialization order in this file.
class TestSpatialTransformer:
@pytest.fixture
def transformer(self, in_channels, num_heads, num_layers):
return partial(
SpatialTransformer,
in_channels=in_channels,
num_heads=num_heads,
num_layers=num_layers,
norm_groups=2,
)

def _unzero_output_proj(self, transformer):
"""
Output proj is initialized with zero weights due to
fixup initialization. Change to non-zero proj weights to
run unit tests with different input combinations.
"""
for p in transformer.out_projection.parameters():
nn.init.normal_(p)
return transformer

def test_transformer_forward_with_context(
self, transformer, x_img, context_dim, num_layers, context
):
transformer_module = self._unzero_output_proj(
transformer(context_dims=[context_dim] * num_layers)
)
context_list = [deepcopy(context) for _ in range(num_layers)]
actual = transformer_module(x_img, context_list)
expected = torch.tensor(2401.9578)
assert_expected(actual.sum(), expected, rtol=0, atol=1e-3)

def test_transformer_forward_without_context(
self, transformer, x_img, context, num_layers
):
transformer_module = self._unzero_output_proj(transformer())
expected = torch.tensor(-1634.7414)
actual = transformer_module(x_img)
assert_expected(actual.sum(), expected, rtol=0, atol=1e-3)
context_list = [deepcopy(context) for _ in range(num_layers)]
actual = transformer_module(x_img, context_list)
assert_expected(actual.sum(), expected, rtol=0, atol=1e-3)

def test_transformer_forward_with_auto_repeated_context(
self, transformer, x_img, context_dim, num_layers, context
):
transformer_module = self._unzero_output_proj(
transformer(context_dims=[context_dim])
)
context_list = [deepcopy(context) for _ in range(num_layers)]
actual = transformer_module(x_img, context_list)
expected = torch.tensor(2401.9578)
assert_expected(actual.sum(), expected, rtol=0, atol=1e-3)

def test_context_dims_layers_mismatch(self, transformer, context_dim, num_layers):
with pytest.raises(ValueError):
transformer(context_dims=[context_dim] * (num_layers - 1))

def test_forward_context_dims_layers_mismatch(
self, transformer, context, context_dim, num_layers
):
transformer_module = transformer(context_dims=[context_dim] * num_layers)
context_list = [deepcopy(context) for _ in range(num_layers - 1)]
with pytest.raises(RuntimeError):
transformer_module(x_img, context_list)

def test_transformer_forward_with_linear_proj(
self, transformer, x_img, context_dim, num_layers, context
):
transformer_module = self._unzero_output_proj(
transformer(
context_dims=[context_dim] * num_layers, use_linear_projections=True
)
)
context_list = [deepcopy(context) for _ in range(num_layers)]
actual = transformer_module(x_img, context_list)
expected = torch.tensor(2401.9578)
assert_expected(actual.sum(), expected, rtol=0, atol=1e-3)
167 changes: 167 additions & 0 deletions tests/diffusion_labs/test_vae.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
#!/usr/bin/env fbpython
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import pytest
import torch
import torch.distributions as tdist
from tests.test_utils import assert_expected, set_rng_seed
from torchmultimodal.diffusion_labs.models.vae.vae import variational_autoencoder


@pytest.fixture(autouse=True)
def set_seed():
set_rng_seed(98765)


@pytest.fixture
def embedding_channels():
return 6


@pytest.fixture
def in_channels():
return 2


@pytest.fixture
def out_channels():
return 5


@pytest.fixture
def z_channels():
return 3


@pytest.fixture
def channels():
return 4


@pytest.fixture
def num_res_blocks():
return 2


@pytest.fixture
def channel_multipliers():
return (1, 2, 4)


@pytest.fixture
def norm_groups():
return 2


@pytest.fixture
def norm_eps():
return 1e-05


@pytest.fixture
def x(in_channels):
bsize = 2
height = 16
width = 16
return torch.randn(bsize, in_channels, height, width)


@pytest.fixture
def z(embedding_channels):
bsize = 2
height = 4
width = 4
return torch.randn(bsize, embedding_channels, height, width)


class TestVariationalAutoencoder:
@pytest.fixture
def vae(
self,
in_channels,
out_channels,
embedding_channels,
z_channels,
channels,
norm_groups,
norm_eps,
channel_multipliers,
num_res_blocks,
):
return variational_autoencoder(
embedding_channels=embedding_channels,
in_channels=in_channels,
out_channels=out_channels,
z_channels=z_channels,
channels=channels,
num_res_blocks=num_res_blocks,
channel_multipliers=channel_multipliers,
norm_groups=norm_groups,
norm_eps=norm_eps,
)

def test_encode(self, vae, x, embedding_channels, channel_multipliers):
posterior = vae.encode(x)
expected_shape = torch.Size(
[
x.size(0),
embedding_channels,
x.size(2) // 2 ** (len(channel_multipliers) - 1),
x.size(3) // 2 ** (len(channel_multipliers) - 1),
]
)
expected_mean = torch.tensor(-3.4872)
assert_expected(posterior.mean.size(), expected_shape)
assert_expected(posterior.mean.sum(), expected_mean, rtol=0, atol=1e-4)

expected_stddev = torch.tensor(193.3726)
assert_expected(posterior.stddev.size(), expected_shape)
assert_expected(posterior.stddev.sum(), expected_stddev, rtol=0, atol=1e-4)

# compute kl with standard gaussian
expected_kl = torch.tensor(9.8025)
torch_kl_divergence = tdist.kl_divergence(
posterior,
tdist.Normal(
torch.zeros_like(posterior.mean), torch.ones_like(posterior.stddev)
),
).sum()
assert_expected(torch_kl_divergence, expected_kl, rtol=0, atol=1e-4)

# compare sample shape
assert_expected(posterior.rsample().size(), expected_shape)

def test_decode(self, vae, z, out_channels, channel_multipliers):
actual = vae.decode(z)
expected = torch.tensor(-156.1534)
expected_shape = torch.Size(
[
z.size(0),
out_channels,
z.size(2) * 2 ** (len(channel_multipliers) - 1),
z.size(3) * 2 ** (len(channel_multipliers) - 1),
]
)
assert_expected(actual.size(), expected_shape)
assert_expected(actual.sum(), expected, rtol=0, atol=1e-4)

@pytest.mark.parametrize(
"sample_posterior,expected_value", [(True, -153.6517), (False, -178.8593)]
)
def test_forward(self, vae, x, out_channels, sample_posterior, expected_value):
actual = vae(x, sample_posterior=sample_posterior).decoder_output
expected = torch.tensor(expected_value)
expected_shape = torch.Size(
[
x.size(0),
out_channels,
x.size(2),
x.size(3),
]
)
assert_expected(actual.size(), expected_shape)
assert_expected(actual.sum(), expected, rtol=0, atol=1e-4)
Loading