-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c16ad65
commit 4b13992
Showing
1 changed file
with
310 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,310 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"provenance": [], | ||
"authorship_tag": "ABX9TyM1dCOzGN9zMcL1Nj+fE3Vk", | ||
"include_colab_link": true | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
}, | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "view-in-github", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"<a href=\"https://colab.research.google.com/github/francescopatane96/Computer_aided_drug_discovery_kit/blob/main/ML_3.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"Unwanted substructures:\n", | ||
"substructures can be reactive or toxic or they can interfere with certain assays. Filtering unwanted substructures can support assembling more efficient screening libraries, which can save time and resources.\n", | ||
"\n", | ||
"Examples of such unwanted features are nitro groups (mutagenic), sulfates and phosphates (likely resulting in unfavorable pharmacokinetic properties), 2-halopyridines and thiols (reactive). \n", | ||
"\n", | ||
"Pan Assay Interference Compounds (PAINS):\n", | ||
"PAINS are compounds that often occur as hits in HTS even though they actually are false positives. PAINS show activity at numerous targets rather than one specific target." | ||
], | ||
"metadata": { | ||
"id": "pXWQZuaa19_j" | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"!pip install rdkit" | ||
], | ||
"metadata": { | ||
"id": "5Ebl1uvs2Vzz" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "eYx9Zu8n0-5g" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from pathlib import Path\n", | ||
"\n", | ||
"import pandas as pd\n", | ||
"from tqdm.auto import tqdm\n", | ||
"from rdkit import Chem\n", | ||
"from rdkit.Chem import PandasTools\n", | ||
"from rdkit.Chem.FilterCatalog import FilterCatalog, FilterCatalogParams" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"# load data from Talktorial T2\n", | ||
"TNFB_data = pd.read_csv(\n", | ||
" \"TNFB_compounds_lipinski.csv\",\n", | ||
" index_col=0,\n", | ||
")\n", | ||
"# Drop unnecessary information\n", | ||
"print(\"Dataframe shape:\", TNFB_data.shape)\n", | ||
"TNFB_data.drop(columns=[\"molecular_weight\", \"n_hbd\", \"n_hba\", \"logp\"], inplace=True)\n", | ||
"TNFB_data.head()" | ||
], | ||
"metadata": { | ||
"id": "5wN1gfYL2fEr" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"# Add molecule column\n", | ||
"PandasTools.AddMoleculeColumnToFrame(TNFB_data, smilesCol=\"smiles\")\n", | ||
"# Draw first 3 molecules\n", | ||
"Chem.Draw.MolsToGridImage(\n", | ||
" list(TNFB_data.head(3).ROMol),\n", | ||
" legends=list(TNFB_data.head(3).molecule_chembl_id),\n", | ||
")" | ||
], | ||
"metadata": { | ||
"id": "rzsqw1ha3Ha8" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"Filter for PAINS" | ||
], | ||
"metadata": { | ||
"id": "u2dRkR2R3epc" | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"# initialize filter\n", | ||
"params = FilterCatalogParams()\n", | ||
"params.AddCatalog(FilterCatalogParams.FilterCatalogs.PAINS)\n", | ||
"catalog = FilterCatalog(params)" | ||
], | ||
"metadata": { | ||
"id": "mtlZeOxU3hJj" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"# search for PAINS\n", | ||
"matches = []\n", | ||
"clean = []\n", | ||
"for index, row in tqdm(TNFB_data.iterrows(), total=TNFB_data.shape[0]):\n", | ||
" molecule = Chem.MolFromSmiles(row.smiles)\n", | ||
" entry = catalog.GetFirstMatch(molecule) # Get the first matching PAINS\n", | ||
" if entry is not None:\n", | ||
" # store PAINS information\n", | ||
" matches.append(\n", | ||
" {\n", | ||
" \"chembl_id\": row.molecule_chembl_id,\n", | ||
" \"rdkit_molecule\": molecule,\n", | ||
" \"pains\": entry.GetDescription().capitalize(),\n", | ||
" }\n", | ||
" )\n", | ||
" else:\n", | ||
" # collect indices of molecules without PAINS\n", | ||
" clean.append(index)\n", | ||
"\n", | ||
"matches = pd.DataFrame(matches)\n", | ||
"TNFB_data = TNFB_data.loc[clean] # keep molecules without PAINS" | ||
], | ||
"metadata": { | ||
"id": "X2kiOCOo3oe7" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"print(f\"Number of compounds with PAINS: {len(matches)}\")\n", | ||
"print(f\"Number of compounds without PAINS: {len(TNFB_data)}\")" | ||
], | ||
"metadata": { | ||
"id": "msNTp6h_3_g6" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"Chem.Draw.MolsToGridImage(\n", | ||
" list(matches.head(5).rdkit_molecule),\n", | ||
" legends=list(matches.head(5)[\"pains\"]),\n", | ||
")" | ||
], | ||
"metadata": { | ||
"id": "zAsR5xdo4Hy7" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"Filter and highlight unwanted substructures" | ||
], | ||
"metadata": { | ||
"id": "hNbb8xcZ4ZCa" | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"substructures = pd.read_csv(\"unwantedSubstructures.csv\", sep=\"\\s+\")\n", | ||
"substructures[\"rdkit_molecule\"] = substructures.smart.apply(Chem.MolFromSmarts)\n", | ||
"print(\"Number of unwanted substructures in collection:\", len(substructures))" | ||
], | ||
"metadata": { | ||
"id": "Zl3Lpz_Q4b3K" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"Chem.Draw.MolsToGridImage(\n", | ||
" mols=substructures.rdkit_molecule.tolist()[2:5],\n", | ||
" \n", | ||
")" | ||
], | ||
"metadata": { | ||
"id": "8XY7inLq7j5L" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"# search for unwanted substructure\n", | ||
"matches = []\n", | ||
"clean = []\n", | ||
"for index, row in tqdm(TNFB_data.iterrows(), total=TNFB_data.shape[0]):\n", | ||
" molecule = Chem.MolFromSmiles(row.smiles)\n", | ||
" match = False\n", | ||
" for _, substructure in substructures.iterrows():\n", | ||
" if molecule.HasSubstructMatch(substructure.rdkit_molecule):\n", | ||
" matches.append(\n", | ||
" {\n", | ||
" \"chembl_id\": row.molecule_chembl_id,\n", | ||
" \"rdkit_molecule\": molecule,\n", | ||
" \"substructure\": substructure.rdkit_molecule,\n", | ||
" \n", | ||
" }\n", | ||
" )\n", | ||
" match = True\n", | ||
" if not match:\n", | ||
" clean.append(index)\n", | ||
"\n", | ||
"matches = pd.DataFrame(matches)\n", | ||
"TNFB_data = TNFB_data.loc[clean]" | ||
], | ||
"metadata": { | ||
"id": "pvqK_Sgq946c" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"print(f\"Number of found unwanted substructure: {len(matches)}\")\n", | ||
"print(f\"Number of compounds without unwanted substructure: {len(TNFB_data)}\")" | ||
], | ||
"metadata": { | ||
"id": "0AP-wfa4-RxL" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"to_highlight = [\n", | ||
" row.rdkit_molecule.GetSubstructMatch(row.substructure) for _, row in matches.head(3).iterrows()\n", | ||
"]\n", | ||
"Chem.Draw.MolsToGridImage(\n", | ||
" list(matches.head(3).rdkit_molecule),\n", | ||
" highlightAtomLists=to_highlight,\n", | ||
" \n", | ||
")" | ||
], | ||
"metadata": { | ||
"id": "46RQc5Mg-cSS" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"source": [ | ||
"Substructure statistics" | ||
], | ||
"metadata": { | ||
"id": "vHbNd3uc-may" | ||
} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"source": [ | ||
"\n", | ||
"group_frequencies = groups.size()\n", | ||
"group_frequencies.sort_values(ascending=False, inplace=True)\n", | ||
"group_frequencies.head(10)" | ||
], | ||
"metadata": { | ||
"id": "XEZb6VBj-myq" | ||
}, | ||
"execution_count": null, | ||
"outputs": [] | ||
} | ||
] | ||
} |