Epi Gene can cluster the whole genomes into 3 categories of core, accessory and unique genes. It can build two types of panmatrixes (i) Binary Panmatrix based on absence and presence of genes. (ii) Panmatrix based on the identity of the sequences. Binary pan-matrix will be used to build a UPMGA tree and heatmap to further describe an evolutionary relationship. While the pan-matrix based on sequence identity can be used for further quantitative analyses. This software can only work in WINDOWS operating systems. For a step by step guide, you can go through the vignettes, case study and this read me file.
Install from GitHub : devtools::install_github("furqan915/Epi-Gene")
Windows operating system
R-Language
R-Studio (Recommended).
Usearch software (available at www.drive5.com/usearch)
Prodigal software (http://compbio.ornl.gov/prodigal/)
getwd()
setwd("E:/test")
library(EpiGene)
genome.table <- read.table("E:/test/Genome.txt", sep="\t", header=TRUE)
genome.table
for( i in 1:dim(genome.table)[1] ){
cat("Relabelling the fasta sequences", genome.table$Files[i], "...\n")
in.file <- file.path("E:/test/genomes", genome.table$Files[i])
out.file <- file.path("E:/test/predicted", genome.table$Files[i])
predORFaa(in.file, out.file)}
for( i in 1:dim(genome.table)[1] ){
cat("Relabelling the fasta sequences", genome.table$Files[i], "...\n")
in.file <- file.path("E:/test/genomes", genome.table$Files[i])
label <- file.path(genome.table$Relabel_ID[i])
out.file <- file.path("E:/test/relabel", genome.table$Files[i])
relabel(in.file,label,out.file)}
setwd("E:/test/relabel")
joinfasta(allfasta)
Need to copy that combined.fasta file into the same very folder that have usearch.exe
sortbylength("combined.fasta", "sorted.fasta")
clust_bin("sorted.fasta", 0.5, "clusterd.fasta", 14)
panGen("bin_matrix.csv")
coregenes("bin_matrix.csv")
accessorygenes("bin_matrix.csv")
Uniqgenes("bin_matrix.csv")
core_gen("clusterd.fasta", 14, "coregen.fasta")
accessory_gen("clusterd.fasta", 14, "accessory.fasta")
uniq_gen("clusterd.fasta", 1, "uniq.fasta")
distGen("bin_matrix.csv")
heatgen1("bin_matrix.csv")
heatgen2("bin_matrix.csv")
This function needs heavy computation. Therefore high number of genomes requires a powerfull computer to generate this heat map.
clust_id("sorted.fasta", 0.5, "clusterd_id.fasta")
Identity matrix generated after this clustering can be utilized for further quantitative analyses e.g. Prinicpal component Analyses.