-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Read kxky files and perform DMD for this data ensuring consistency of the GKM system
- Loading branch information
1 parent
daeeb37
commit 44f68a4
Showing
1 changed file
with
246 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
import os | ||
import numpy as np | ||
from gacodefuncs import * | ||
from cgyro.data import cgyrodata | ||
import matplotlib.pyplot as plt | ||
from pydmd import DMD | ||
import matplotlib.gridspec as gridspec | ||
|
||
DTYPE='float64' | ||
|
||
|
||
def read_binary_file(file_path, dtype=np.complex64): | ||
|
||
with open(file_path, 'rb') as file: | ||
file_content = file.read() | ||
|
||
type_size = np.dtype(dtype).itemsize | ||
|
||
num_elements = len(file_content) // type_size | ||
|
||
data = np.frombuffer(file_content, dtype=np.complex64, count=num_elements) | ||
|
||
return data | ||
|
||
|
||
# main | ||
filename = "/path/to/bin.cgyro.kxky_phi" | ||
dens_filename = "/path/to/bin.cgyro.kxky_n" | ||
apar_filename = "/path/to/bin.cgyro.kxky_apar" | ||
|
||
# optional | ||
bpar_filename = "/path/to/bin.cgyro.kxky_bpar" | ||
v_filename = "/path/to/bin.cgyro.kxky_v" | ||
|
||
time = np.loadtxt("/path/to/out.cgyro.time") | ||
sim = cgyrodata('/path/to/all_CGYRO_outputs/') | ||
|
||
|
||
|
||
print('ky*rho = ', sim.ky0) | ||
print('omega = ', sim.freq[0,0,-1]) | ||
print('gamma = ', sim.freq[1,0,-1]) | ||
|
||
|
||
|
||
t = time[:,0] | ||
N_radial = 4 # CGYRO N_RADIAL | ||
N_theta = 32 # CGYRO N_THETA | ||
Nspecies = 2 # number of gyrokinetic species | ||
theta = np.linspace(-np.pi, np.pi, N_theta * N_radial) * N_radial | ||
theta0 = np.linspace(-np.pi, np.pi, N_theta) | ||
|
||
|
||
|
||
data = read_binary_file(filename) | ||
sim0 = np.zeros([len(t), N_theta, N_radial], dtype=DTYPE) | ||
sim0 = data.reshape(sim0.shape) | ||
phi_kxky = sim0 | ||
|
||
data = read_binary_file(dens_filename) | ||
sim0 = np.zeros([len(t), N_theta, N_radial, Nspecies], dtype=DTYPE) | ||
sim0 = data.reshape(sim0.shape) | ||
dens_kxky = sim0 | ||
|
||
data = read_binary_file(apar_filename) | ||
sim0 = np.zeros([len(t), N_theta, N_radial], dtype=DTYPE) | ||
sim0 = data.reshape(sim0.shape) | ||
apar_kxky = sim0 | ||
|
||
data = read_binary_file(bpar_filename) | ||
sim0 = np.zeros([len(t), N_theta, N_radial], dtype=DTYPE) | ||
sim0 = data.reshape(sim0.shape) | ||
bpar_kxky = sim0 | ||
|
||
data = read_binary_file(v_filename) | ||
sim0 = np.zeros([len(t), N_theta, N_radial, Nspecies], dtype=DTYPE) | ||
sim0 = data.reshape(sim0.shape) | ||
v_kxky = sim0 | ||
|
||
|
||
# SVD rank to perform DMD | ||
svd_rank = 0 | ||
# j to label radial grid | ||
j=2 | ||
|
||
|
||
# step for DMD | ||
delt = t[1]-t[0] | ||
|
||
#----------------------------------------------------------------------------------------- | ||
# fluctuating potential | ||
|
||
dmd = DMD(svd_rank = svd_rank, exact = True) | ||
dmd.fit(phi_kxky[:,:,j].T) | ||
|
||
realEigs = np.log(dmd.eigs)/(-complex(0,1)*delt) | ||
|
||
|
||
fig = plt.figure() | ||
gs = gridspec.GridSpec(1,1) | ||
ax1 = fig.add_subplot(gs[0,0]) | ||
|
||
ax1.axvline(0., linestyle="dashed", color="k", linewidth=0.5) | ||
ax1.axhline(0., linestyle="dashed", color="k", linewidth=0.5) | ||
|
||
ax1.plot(realEigs.real, realEigs.imag, 'o') | ||
|
||
ax1.set_xlabel(r"realEigs.real, i.e. $\omega$", fontsize=15) | ||
ax1.set_ylabel(r"realEigs.imag, i.e. $\gamma$", fontsize=15) | ||
ax1.tick_params(labelsize=15) | ||
|
||
|
||
|
||
print ('DMD predictions based on Phi:') | ||
print (realEigs) | ||
#plt.show() | ||
|
||
|
||
#----------------------------------------------------------------------------------------- | ||
# fluctuating density 1 | ||
|
||
dmd = DMD(svd_rank = svd_rank, exact = True) | ||
dmd.fit(dens_kxky[:,:,j,0].T) | ||
|
||
realEigs = np.log(dmd.eigs)/(-complex(0,1)*delt) | ||
|
||
|
||
ax1.axvline(0., linestyle="dashed", color="k", linewidth=0.5) | ||
ax1.axhline(0., linestyle="dashed", color="k", linewidth=0.5) | ||
|
||
ax1.plot(realEigs.real, realEigs.imag, 's', color="tab:green", mfc="none", markersize=9.5) | ||
|
||
ax1.set_xlabel(r"realEigs.real, i.e. $\omega$", fontsize=15) | ||
ax1.set_ylabel(r"realEigs.imag, i.e. $\gamma$", fontsize=15) | ||
ax1.tick_params(labelsize=15) | ||
|
||
|
||
|
||
print ('DMD predictions based on density (species 1):') | ||
print (realEigs) | ||
#plt.show() | ||
|
||
|
||
#----------------------------------------------------------------------------------------- | ||
# fluctuating density 2 | ||
|
||
dmd = DMD(svd_rank = svd_rank, exact = True) | ||
dmd.fit(dens_kxky[:,:,j,1].T) | ||
|
||
realEigs = np.log(dmd.eigs)/(-complex(0,1)*delt) | ||
|
||
|
||
ax1.axvline(0., linestyle="dashed", color="k", linewidth=0.5) | ||
ax1.axhline(0., linestyle="dashed", color="k", linewidth=0.5) | ||
|
||
ax1.plot(realEigs.real, realEigs.imag, 's', color="green", mfc="none", markersize=8.5) | ||
|
||
ax1.set_xlabel(r"realEigs.real, i.e. $\omega$", fontsize=15) | ||
ax1.set_ylabel(r"realEigs.imag, i.e. $\gamma$", fontsize=15) | ||
ax1.tick_params(labelsize=15) | ||
|
||
|
||
|
||
print ('DMD predictions based on density (species 2):') | ||
print (realEigs) | ||
#plt.show() | ||
|
||
|
||
#----------------------------------------------------------------------------------------- | ||
# fluctuating vector potential | ||
|
||
dmd = DMD(svd_rank = svd_rank, exact = True) | ||
dmd.fit(apar_kxky[:,:,j].T) | ||
|
||
realEigs = np.log(dmd.eigs)/(-complex(0,1)*delt) | ||
|
||
|
||
ax1.axvline(0., linestyle="dashed", color="k", linewidth=0.5) | ||
ax1.axhline(0., linestyle="dashed", color="k", linewidth=0.5) | ||
|
||
ax1.plot(realEigs.real, realEigs.imag, 'o', color="red", mfc="none") | ||
|
||
ax1.set_xlabel(r"realEigs.real, i.e. $\omega$", fontsize=15) | ||
ax1.set_ylabel(r"realEigs.imag, i.e. $\gamma$", fontsize=15) | ||
ax1.tick_params(labelsize=15) | ||
|
||
|
||
|
||
print ('DMD predictions based on Apar:') | ||
print (realEigs) | ||
#plt.show() | ||
|
||
|
||
#----------------------------------------------------------------------------------------- | ||
# fluctuating magnetic field | ||
|
||
dmd = DMD(svd_rank = svd_rank, exact = True) | ||
dmd.fit(bpar_kxky[:,:,j].T) | ||
|
||
realEigs = np.log(dmd.eigs)/(-complex(0,1)*delt) | ||
|
||
|
||
ax1.axvline(0., linestyle="dashed", color="k", linewidth=0.5) | ||
ax1.axhline(0., linestyle="dashed", color="k", linewidth=0.5) | ||
|
||
ax1.plot(realEigs.real, realEigs.imag, 'o', color="deeppink", mfc="none", markersize=7.5) | ||
|
||
ax1.set_xlabel(r"realEigs.real, i.e. $\omega$", fontsize=15) | ||
ax1.set_ylabel(r"realEigs.imag, i.e. $\gamma$", fontsize=15) | ||
ax1.tick_params(labelsize=15) | ||
|
||
|
||
|
||
print ('DMD predictions based on Bpar:') | ||
print (realEigs) | ||
plt.show() | ||
|
||
|
||
#----------------------------------------------------------------------------------------- | ||
# fluctuating v | ||
|
||
dmd = DMD(svd_rank = svd_rank, exact = True) | ||
dmd.fit(v_kxky[:,:,j,1].T) | ||
|
||
realEigs = np.log(dmd.eigs)/(-complex(0,1)*delt) | ||
|
||
|
||
ax1.axvline(0., linestyle="dashed", color="k", linewidth=0.5) | ||
ax1.axhline(0., linestyle="dashed", color="k", linewidth=0.5) | ||
|
||
ax1.plot(realEigs.real, realEigs.imag, '^', color="cyan", mfc="none") | ||
|
||
ax1.set_xlabel(r"realEigs.real, i.e. $\omega$", fontsize=15) | ||
ax1.set_ylabel(r"realEigs.imag, i.e. $\gamma$", fontsize=15) | ||
ax1.tick_params(labelsize=15) | ||
|
||
|
||
|
||
print (realEigs) | ||
plt.show() | ||
|
||
|
||
|
||
|
||
|
||
|