-
Notifications
You must be signed in to change notification settings - Fork 43
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #613 from bobmyhill/spock
added SPOCK EoS
- Loading branch information
Showing
5 changed files
with
297 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,229 @@ | ||
from __future__ import absolute_import | ||
|
||
# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit | ||
# for the Earth and Planetary Sciences. | ||
# Copyright (C) 2012 - 2024 by the BurnMan team, released under the GNU | ||
# GPL v2 or later. | ||
|
||
|
||
import scipy.optimize as opt | ||
from scipy.special import gamma, gammainc, exp1 | ||
from . import equation_of_state as eos | ||
import warnings | ||
import numpy as np | ||
|
||
|
||
# Try to import the jit from numba. If it is | ||
# not available, just go with the standard | ||
# python interpreter | ||
try: | ||
from numba import jit | ||
except ImportError: | ||
|
||
def jit(fn): | ||
return fn | ||
|
||
|
||
def gammaincc(a, x): | ||
""" | ||
An implementation of the non-regularised upper incomplete gamma | ||
function. Computed using the relationship with the regularised | ||
lower incomplete gamma function (scipy.special.gammainc). | ||
Uses the recurrence relation wherever a<0. | ||
""" | ||
n = int(-np.floor(a)) | ||
if n > 0: | ||
a = a + n | ||
u_gamma = exp1(x) if a == 0 else (1.0 - gammainc(a, x)) * gamma(a) | ||
|
||
for _ in range(n): | ||
a = a - 1.0 | ||
u_gamma = (u_gamma - np.power(x, a) * np.exp(-x)) / a | ||
return u_gamma | ||
else: | ||
return (1.0 - gammainc(a, x)) * gamma(a) | ||
|
||
|
||
@jit(nopython=True) | ||
def make_params(K_0, Kp_0, Kp_inf, Kdp_0): | ||
dKpdlnV_zero = -Kdp_0 * K_0 | ||
c = Kp_inf | ||
a = dKpdlnV_zero / (Kp_0 - Kp_inf) | ||
b = (Kp_0 - Kp_inf) / a | ||
return a, b, c | ||
|
||
|
||
class SPOCK(eos.EquationOfState): | ||
""" | ||
Class for the Scaled Power Of Compression K-prime equation of state. | ||
This equation is derived from the assumption that K' = b*(V/V_0)^a. | ||
This equation of state has no temperature dependence. | ||
""" | ||
|
||
def isothermal_bulk_modulus_reuss(self, pressure, temperature, volume, params): | ||
""" | ||
Returns isothermal bulk modulus :math:`K_T` :math:`[Pa]` as a function of pressure :math:`[Pa]`, | ||
temperature :math:`[K]` and volume :math:`[m^3]`. | ||
""" | ||
ai, bi, ci = make_params( | ||
params["K_0"], params["Kprime_0"], params["Kprime_inf"], params["Kdprime_0"] | ||
) | ||
|
||
lnVrel = np.log(volume / params["V_0"]) | ||
return params["K_0"] * np.exp(-bi * (np.exp(ai * lnVrel) - 1.0) - ci * lnVrel) | ||
|
||
def volume(self, pressure, temperature, params): | ||
""" | ||
Get the Vinet volume at a reference temperature for a given | ||
pressure :math:`[Pa]`. Returns molar volume in :math:`[m^3]` | ||
""" | ||
|
||
def delta_pressure(x): | ||
return self.pressure(0.0, x, params) - pressure | ||
|
||
V = opt.brentq(delta_pressure, 0.1 * params["V_0"], 1.5 * params["V_0"]) | ||
return V | ||
|
||
def pressure(self, temperature, volume, params): | ||
""" | ||
Returns pressure :math:`[Pa]` as a function of volume :math:`[m^3]`. | ||
""" | ||
ai, bi, ci = make_params( | ||
params["K_0"], params["Kprime_0"], params["Kprime_inf"], params["Kdprime_0"] | ||
) | ||
lnVrel = np.log(volume / params["V_0"]) | ||
return params["P_0"] + ( | ||
params["K_0"] | ||
* np.exp(bi) | ||
/ ai | ||
* np.power(bi, ci / ai) | ||
* ( | ||
gammaincc( | ||
-ci / ai, | ||
bi * np.exp(ai * lnVrel), | ||
) | ||
- gammaincc(-ci / ai, bi) | ||
) | ||
) | ||
|
||
def molar_internal_energy(self, pressure, temperature, volume, params): | ||
""" | ||
Returns the internal energy :math:`\\mathcal{E}` of the mineral. :math:`[J/mol]` | ||
""" | ||
ai, bi, ci = make_params( | ||
params["K_0"], params["Kprime_0"], params["Kprime_inf"], params["Kdprime_0"] | ||
) | ||
lnVrel = np.log(volume / params["V_0"]) | ||
f = ( | ||
-params["V_0"] | ||
* params["K_0"] | ||
* np.exp(bi) | ||
/ ai | ||
* np.power(bi, (ci - 1.0) / ai) | ||
) | ||
|
||
Vrel = np.exp(lnVrel) | ||
I1 = ( | ||
np.power(bi, 1.0 / ai) | ||
* Vrel | ||
* ( | ||
gammaincc( | ||
-ci / ai, | ||
bi * np.exp(ai * lnVrel), | ||
) | ||
- gammaincc(-ci / ai, bi) | ||
) | ||
) | ||
I2 = gammaincc( | ||
(1.0 - ci) / ai, | ||
bi * np.exp(ai * lnVrel), | ||
) - gammaincc((1.0 - ci) / ai, bi) | ||
|
||
return params["E_0"] + params["P_0"] * (volume - params["V_0"]) + f * (I1 - I2) | ||
|
||
def gibbs_free_energy(self, pressure, temperature, volume, params): | ||
""" | ||
Returns the Gibbs free energy :math:`\\mathcal{G}` of the mineral. :math:`[J/mol]` | ||
""" | ||
return ( | ||
self.molar_internal_energy(pressure, temperature, volume, params) | ||
+ pressure * volume | ||
) | ||
|
||
def isentropic_bulk_modulus_reuss(self, pressure, temperature, volume, params): | ||
""" | ||
Returns adiabatic bulk modulus :math:`K_s` of the mineral. :math:`[Pa]`. | ||
""" | ||
return self.isothermal_bulk_modulus_reuss(pressure, temperature, volume, params) | ||
|
||
def shear_modulus(self, pressure, temperature, volume, params): | ||
""" | ||
Returns shear modulus :math:`G` of the mineral. :math:`[Pa]` | ||
""" | ||
return 1.0e99 | ||
|
||
def entropy(self, pressure, temperature, volume, params): | ||
""" | ||
Returns the molar entropy :math:`\\mathcal{S}` of the mineral. :math:`[J/K/mol]` | ||
""" | ||
return 0.0 | ||
|
||
def molar_heat_capacity_v(self, pressure, temperature, volume, params): | ||
""" | ||
Since this equation of state does not contain temperature effects, return a very small number. :math:`[J/K/mol]` | ||
""" | ||
return 1.0e-99 | ||
|
||
def molar_heat_capacity_p(self, pressure, temperature, volume, params): | ||
""" | ||
Since this equation of state does not contain temperature effects, return a very small number. :math:`[J/K/mol]` | ||
""" | ||
return 1.0e-99 | ||
|
||
def thermal_expansivity(self, pressure, temperature, volume, params): | ||
""" | ||
Since this equation of state does not contain temperature effects, return zero. :math:`[1/K]` | ||
""" | ||
return 0.0 | ||
|
||
def grueneisen_parameter(self, pressure, temperature, volume, params): | ||
""" | ||
Since this equation of state does not contain temperature effects, return zero. :math:`[unitless]` | ||
""" | ||
return 0.0 | ||
|
||
def validate_parameters(self, params): | ||
""" | ||
Check for existence and validity of the parameters. | ||
The value for :math:`K'_{\\infty}` is thermodynamically bounded | ||
between 5/3 and :math:`K'_0` :cite:`StaceyDavis2004`. | ||
""" | ||
|
||
if "E_0" not in params: | ||
params["E_0"] = 0.0 | ||
if "P_0" not in params: | ||
params["P_0"] = 1.0e5 | ||
|
||
# Check that all the required keys are in the dictionary | ||
expected_keys = ["V_0", "K_0", "Kprime_0", "Kdprime_0", "Kprime_inf"] | ||
for k in expected_keys: | ||
if k not in params: | ||
raise KeyError("params object missing parameter : " + k) | ||
|
||
# Finally, check that the values are reasonable. | ||
if params["P_0"] < 0.0: | ||
warnings.warn("Unusual value for P_0", stacklevel=2) | ||
if params["V_0"] < 1.0e-7 or params["V_0"] > 1.0e-3: | ||
warnings.warn("Unusual value for V_0", stacklevel=2) | ||
if params["K_0"] < 1.0e9 or params["K_0"] > 1.0e13: | ||
warnings.warn("Unusual value for K_0", stacklevel=2) | ||
if params["Kprime_0"] < 0.0 or params["Kprime_0"] > 10.0: | ||
warnings.warn("Unusual value for Kprime_0", stacklevel=2) | ||
if params["Kdprime_0"] > 0.0: | ||
warnings.warn("Unusual value for Kdprime_0", stacklevel=2) | ||
if ( | ||
params["Kprime_inf"] < 5.0 / 3.0 | ||
or params["Kprime_inf"] > params["Kprime_0"] | ||
): | ||
warnings.warn("Unusual value for Kprime_inf", stacklevel=2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
from __future__ import absolute_import | ||
|
||
# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit | ||
# for the Earth and Planetary Sciences. | ||
# Copyright (C) 2012 - 2024 by the BurnMan team, released under the GNU | ||
# GPL v2 or later. | ||
|
||
from burnman.tools.eos import check_eos_consistency | ||
from burnman import Mineral | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import matplotlib.image as mpimg | ||
|
||
HMX_params = { | ||
"P_0": 1.0e5, | ||
"V_0": 1.0e-6, # arbitrary value | ||
"K_0": 15.22e9, | ||
"Kprime_0": 7.54, | ||
"Kdprime_0": -7.54 / 15.22e9, | ||
"Kprime_inf": 2.63, | ||
"molar_mass": 0.296155, | ||
"equation_of_state": "spock", | ||
} | ||
|
||
HMX = Mineral(HMX_params) | ||
|
||
if check_eos_consistency(HMX, tol=1.0e-5, including_shear_properties=False): | ||
print("The SPOCK EoS is internally consistent.\n") | ||
|
||
pressures = np.linspace(0.0, 100.0e9, 6) | ||
temperatures = 0.0 + 0.0 * pressures | ||
V, K_T = HMX.evaluate(["V", "K_T"], pressures, temperatures) | ||
|
||
for i in range(6): | ||
print( | ||
f"{pressures[i]/1.e9:3.0f} GPa: " | ||
f"V/V_0 = {V[i]/HMX_params['V_0']:.3f}, " | ||
f"K_T = {K_T[i]/1.e9:6.2f} GPa" | ||
) | ||
|
||
|
||
fig1 = mpimg.imread("figures/Lozano_Aslam_2022_Fig6c_HMX.png") | ||
plt.imshow(fig1, extent=[0.0, 100.0, 0, 500.0], aspect="auto") | ||
|
||
for a in [1.0, 1.5, 2.0]: | ||
HMX_params["Kdprime_0"] = -a * HMX_params["Kprime_0"] / HMX_params["K_0"] | ||
|
||
pressures = np.linspace(0.0, 100.0e9, 101) | ||
temperatures = 0.0 + 0.0 * pressures | ||
K_T = HMX.evaluate(["K_T"], pressures, temperatures)[0] | ||
|
||
plt.plot(pressures / 1.0e9, K_T / 1.0e9, linestyle=":", label=f"SPOCK {a}") | ||
|
||
plt.ylim(0.0, 500.0) | ||
plt.legend(loc=(0.025, 0.5)) | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
The SPOCK EoS is internally consistent. | ||
|
||
0 GPa: V/V_0 = 1.000, K_T = 15.22 GPa | ||
20 GPa: V/V_0 = 0.711, K_T = 137.70 GPa | ||
40 GPa: V/V_0 = 0.638, K_T = 243.48 GPa | ||
60 GPa: V/V_0 = 0.596, K_T = 342.73 GPa | ||
80 GPa: V/V_0 = 0.566, K_T = 437.90 GPa | ||
100 GPa: V/V_0 = 0.543, K_T = 530.17 GPa |