Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

tweak spock eos #614

Merged
merged 2 commits into from
Nov 26, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 34 additions & 25 deletions burnman/eos/spock.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,24 +24,35 @@ def jit(fn):
return fn


def gammaincc(a, x):
def generalised_gammainc(a, x1, x2):
"""
An implementation of the non-regularised upper incomplete gamma
An implementation of the generalised incomplete gamma
function. Computed using the relationship with the regularised
lower incomplete gamma function (scipy.special.gammainc).
Uses the recurrence relation wherever a<0.

We could have used mpmath.gammainc(a, x1, x2) directly,
but it is significantly slower than this implementation.
"""
n = int(-np.floor(a))
if n > 0:
a = a + n
u_gamma = exp1(x) if a == 0 else (1.0 - gammainc(a, x)) * gamma(a)
u_gamma = (
exp1(x1) - exp1(x2)
if np.abs(a) < 1.0e-12
else (gammainc(a, x2) - gammainc(a, x1)) * gamma(a)
)

esubx1 = np.exp(-x1)
esubx2 = np.exp(-x2)
for _ in range(n):
a = a - 1.0
u_gamma = (u_gamma - np.power(x, a) * np.exp(-x)) / a
u_gamma = (
u_gamma + np.power(x2, a) * esubx2 - np.power(x1, a) * esubx1
) / a
return u_gamma
else:
return (1.0 - gammainc(a, x)) * gamma(a)
return (gammainc(a, x2) - gammainc(a, x1)) * gamma(a)


@jit(nopython=True)
Expand Down Expand Up @@ -98,13 +109,7 @@ def pressure(self, temperature, volume, params):
* np.exp(bi)
/ ai
* np.power(bi, ci / ai)
* (
gammaincc(
-ci / ai,
bi * np.exp(ai * lnVrel),
)
- gammaincc(-ci / ai, bi)
)
* (generalised_gammainc(-ci / ai, bi * np.exp(ai * lnVrel), bi))
)

def molar_internal_energy(self, pressure, temperature, volume, params):
Expand All @@ -127,18 +132,9 @@ def molar_internal_energy(self, pressure, temperature, volume, params):
I1 = (
np.power(bi, 1.0 / ai)
* Vrel
* (
gammaincc(
-ci / ai,
bi * np.exp(ai * lnVrel),
)
- gammaincc(-ci / ai, bi)
)
* (generalised_gammainc(-ci / ai, bi * np.exp(ai * lnVrel), bi))
)
I2 = gammaincc(
(1.0 - ci) / ai,
bi * np.exp(ai * lnVrel),
) - gammaincc((1.0 - ci) / ai, bi)
I2 = generalised_gammainc((1.0 - ci) / ai, bi * np.exp(ai * lnVrel), bi)

return params["E_0"] + params["P_0"] * (volume - params["V_0"]) + f * (I1 - I2)

Expand Down Expand Up @@ -221,9 +217,22 @@ def validate_parameters(self, params):
if params["Kprime_0"] < 0.0 or params["Kprime_0"] > 10.0:
warnings.warn("Unusual value for Kprime_0", stacklevel=2)
if params["Kdprime_0"] > 0.0:
warnings.warn("Unusual value for Kdprime_0", stacklevel=2)
warnings.warn("Kdprime_0 should be negative", stacklevel=2)
if (
-params["Kdprime_0"] * params["K_0"]
< params["Kprime_0"] - params["Kprime_inf"]
):
warnings.warn(
"Kdprime_0*K_0 is expected to be more "
"negative than (Kprime_0 - Kprime_inf)",
stacklevel=2,
)
if (
params["Kprime_inf"] < 5.0 / 3.0
or params["Kprime_inf"] > params["Kprime_0"]
):
warnings.warn("Unusual value for Kprime_inf", stacklevel=2)
warnings.warn(
"Kprime_inf is expected to be greater "
"than the Thomas-Fermi limit (5/3)",
stacklevel=2,
)
Loading