Skip to content

haaguileraa/CIP_-MoDL_vs_VarNet-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

93 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CIP_-MoDL_vs_VarNet-

Computational Imaging Project CIP

References:

"Blind" tutorial using HPC

1. login

  • ssh <user>@tinyx.nhr.fau.de

2. Write in the terminal

  • module load python/3.8-anaconda

  • conda init bash

  • source ~/.bashrc

  • nano ~/.profile

  •   if [ -n "$BASH_VERSION" ]; then
      #  include .bashrc if it exists
      if [ -f "$HOME/.bashrc" ]; then
      . "$HOME/.bashrc"
      fi
      fi 
    
    
  • conda config # create ~/.condarc

  • nano ~/.condarc

  • pkgs_dirs:
    - ${WORK}/software/privat/conda/pkgs
    envs_dirs:
    - ${WORK}/software/privat/conda/envs
    
    
    
  • conda create --name myenv

  • conda activate myenv

  • pip install tensorflow matplotlib numpy fastmri h5py tqdm

  • NOTE: If some of the packages can't be pip instal try using conda install <package>

3. USE your HPC account using TinyGPU on https://jupyterhub.rrze.uni-erlangen.de/

4. Select the kernel named Python [conda env:conda-myenv]

5. Link the folder to training data (you have to be in CIP_-MoDL_vs_VarNet/):

  • ln -s /home/vault/iwbi/shared/cip22_varnet_modl/brain/train
  • ln -s /home/vault/iwbi/shared/cip22_varnet_modl/brain/test
  • ln -s /home/vault/iwbi/shared/cip22_varnet_modl/brain/val

6. Usage Compat:

7. Copying files from HPC to local

  • scp -r <user>@tinyx.nhr.fau.de:/home/hpc/iwbi/<user>/origin_dir home/user/objective_directory

About

Computational Imaging Project CIP

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •