Comprehensive tutorial for differential methylation analysis, differential variability analysis and integrative analysis. The code and approaches that I share here are those I am using to analyze TCGA methylation data. At the bottom of the page you can find references used to make this tutorial..
The three main analysis on methylation data, are covered:
#______________loading packages__________________#
library(TCGAbiolinks)
library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
library(IlluminaHumanMethylation450kmanifest)
library(minfi)
library(limma)
library(missMethyl)
library(DMRcate)
library(Gviz)
library(ggplot2)
library(RColorBrewer)
library(edgeR)
#increase memory size
memory.limit(size = 28000) # do this at your own risk!
#_________ DNA methylation Download____________#
# DNA methylation aligned to hg19
query_met <- GDCquery(project= "TCGA-BLCA",
data.category = "DNA methylation",
platform = "Illumina Human Methylation 450",
legacy = TRUE)
GDCdownload(query_met)
#putting files together
data.met <- GDCprepare(query_met)
#saving the met object
saveRDS(object = data.met,
file = "data.met.RDS",
compress = FALSE)
# loading saved session: Once you saved your data, you can load it into your environment:
data.met = readRDS(file = "data.met.RDS")
# met matrix
met <- as.data.frame(SummarizedExperiment::assay(data.met))
# clinical data
clinical <- data.frame(data.met@colData)
#___________inspectiong methylation data_______________#
# get the 450k annotation data
ann450k <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)
## Remove probes with NA
probe.na <- rowSums(is.na(met))
table(probe.na == 0)
#FALSE TRUE
#103553 382024
# chose those that have no NA values in rows
probe <- probe.na[probe.na == 0]
met <- met[row.names(met) %in% names(probe), ]
## remove probes that match chromosomes X and Y
keep <- !(row.names(met) %in% ann450k$Name[ann450k$chr %in% c("chrX","chrY")])
table(keep)
met <- met[keep, ]
rm(keep) # remove no further needed probes.
## remove SNPs overlapped probe
table(is.na(ann450k$Probe_rs))
# probes without snp
no.snp.probe <- ann450k$Name[is.na(ann450k$Probe_rs)]
snp.probe <- ann450k[!is.na(ann450k$Probe_rs), ]
#snps with maf <= 0.05
snp5.probe <- snp.probe$Name[snp.probe$Probe_maf <= 0.05]
# filtre met
met <- met[row.names(met) %in% c(no.snp.probe, snp5.probe), ]
#remove no-further needed dataset
rm(no.snp.probe, probe, probe.na, snp.probe, snp5.probe)
## Removing probes that have been demonstrated to map to multiple places in the genome.
# list adapted from https://www.tandfonline.com/doi/full/10.4161/epi.23470
crs.reac <- read.csv("cross_reactive_probe.chen2013.csv")
crs.reac <- crs.reac$TargetID[-1]
# filtre met
met <- met[ -which(row.names(met) %in% crs.reac), ]
bval <- met
## Converting beta values to m_values
## m = log2(beta/1-beta)
mval <- t(apply(met, 1, function(x) log2(x/(1-x))))
#______________saving/loading_____________________#
# save data sets
#saveRDS(mval, file = "mval.RDS", compress = FALSE)
#saveRDS (bval, file = "bval.RDS", compress = FALSE)
#mval <- readRDS("mval.RDS")
#bval <- readRDS("bval.RDS")
Here we are interested in finding probes that are differentially methylated between low-grade and high-grade bladder cancer. In the clinical
dataset, there is column paper_Histologic.grade
that provides data on tumor grade. Also as one can see, most of low-grade bladder cancer samples belong to the luminal papillary subtype.
table(clinical$paper_Histologic.grade, clinical$paper_mRNA.cluster)
# Basal_squamous Luminal Luminal_infiltrated Luminal_papillary ND Neuronal
# High Grade 143 28 79 120 4 20
# Low Grade 1 0 0 20 0 0
# ND 0 0 1 2 0 0
# Filtering and grouping
clinical <- clinical[, c("barcode", "paper_Histologic.grade", "paper_mRNA.cluster")]
clinical <- na.omit(clinical)
clinical <- clinical[-which(clinical$paper_mRNA.cluster == "ND"), ]
clinical <- clinical[-which(clinical$paper_Histologic.grade == "ND"), ]
clinical <- clinical[which(clinical$paper_mRNA.cluster == "Luminal_papillary"), ]
barcode <- clinical$barcode
# removing samples from meth matrixes
bval <- bval[, colnames(bval) %in% barcode]
mval <- mval[, colnames(mval) %in% barcode]
# Making sure about samples in clinical and matrixes and their order
table(colnames(mval) %in% row.names(clinical))
table(colnames(bval) %in% row.names(clinical))
#
all(row.names(clinical) == colnames(bval))
all(row.names(clinical) == colnames(mval))
#Making grouping variable
clinical$paper_Histologic.grade <- as.factor(clinical$paper_Histologic.grade)
#levels(clinical$paper_Histologic.grade)
clinical$paper_Histologic.grade <- relevel(clinical$paper_Histologic.grade, ref = "Low Grade")
#_____________ DMC analysis________________#
design <- model.matrix(~ paper_Histologic.grade, data = clinical)
# fit the linear model
fit <- lmFit(mval, design)
fit2 <- eBayes(fit)
# extracting significantly methylated probes
deff.meth = topTable(fit2, coef=ncol(design), sort.by="p",number = nrow(mval), adjust.method = "BY")
logFC | AveExpr | t | P.Value | adj.P.Val | B | |
---|---|---|---|---|---|---|
cg16177647 | 1.629042 | 2.901692 | 9.204956 | 4.442382e-16 | 1.511929e-09 | 25.51849 |
cg15465367 | 3.319291 | 4.106852 | 9.129078 | 6.895310e-16 | 1.511929e-09 | 25.10705 |
cg04117396 | 3.699929 | 2.056517 | 9.019180 | 1.301506e-15 | 1.902534e-09 | 24.51242 |
cg23797032 | 3.051319 | 1.563557 | 8.958209 | 1.849956e-15 | 2.028192e-09 | 24.18321 |
cg17278466 | 4.550559 | 2.647423 | 8.881866 | 2.870870e-15 | 2.517973e-09 | 23.77173 |
cg10113582 | 2.614498 | 5.553400 | 8.576775 | 1.645866e-14 | 1.202959e-08 | 22.13599 |
# Visualization
# plot the top 10 most significantly differentially methylated CpGs
par(mfrow=c(2,5))
sapply(rownames(deff.meth)[1:10], function(cpg){
plotCpg(bval, cpg=cpg, pheno=clinical$paper_Histologic.grade, ylab = "Beta values")
})
# Making a volcano plot
#making dataset
dat <- data.frame(foldchange = fit[["coefficients"]][,2], logPvalue = -log10(fit2[["p.value"]][,2]))
dat$threshold <- as.factor(abs(dat$foldchange) < 0.4)
#Visualization
cols <- c("TRUE" = "grey", "FALSE" = "blue")
ggplot(data=dat, aes(x=foldchange, y = logPvalue, color=threshold)) +
geom_point(alpha=.6, size=1.2) +
scale_colour_manual(values = cols) +
geom_vline(xintercept = 0.4, colour="#990000", linetype="dashed") +
geom_vline(xintercept = - 0.4, colour="#990000", linetype="dashed") +
theme(legend.position="none") +
xlab("Fold Change") +
ylab("-log10 p value") +
theme_bw() +
theme(legend.position = "none")
# Setting some annotation
myAnnotation <- cpg.annotate(object = mval, datatype = "array",
what = "M",
analysis.type = "differential",
design = design,
contrasts = FALSE,
coef = "paper_Histologic.gradeHigh Grade",
arraytype = "450K",
fdr = 0.001)
str(myAnnotation)
# DMR analysis
DMRs <- dmrcate(myAnnotation, lambda=1000, C=2)
results.ranges <- extractRanges(DMRs)
results.ranges
# visualization
dmr.table <- data.frame(results.ranges)
# Setting up variables for groupinh and color
pal <- brewer.pal(8,"Dark2")
groups <- pal[1:length(unique(clinical$paper_Histologic.grade))]
names(groups) <- levels(factor(clinical$paper_Histologic.grade))
#setting up the genomic region
gen <- "hg19"
# the index of the DMR that we will plot
dmrIndex <- 2
# coordinates are stored under results.ranges[dmrIndex]
chrom <- as.character(seqnames(results.ranges[dmrIndex]))
start <- as.numeric(start(results.ranges[dmrIndex]))
end <- as.numeric(end(results.ranges[dmrIndex]))
# Add 25% extra space to plot
minbase <- start - (0.25*(end-start))
maxbase <- end + (0.25*(end-start))
# defining CpG islands track
# download cpgislands for chromosome number 6 from ucsc
chr6.cpg <- read.csv("chr6-cpg.csv")
islandData <- GRanges(seqnames=Rle(chr6.cpg[,1]),
ranges=IRanges(start=chr6.cpg[,2],
end=chr6.cpg[,3]),
strand=Rle(strand(rep("*",nrow(chr6.cpg)))))
# DNAseI hypersensitive sites track
#downloaded from ucsc
chr6.dnase <- read.csv("chr6-dnase.csv")
dnaseData <- GRanges(seqnames=chr6.dnase[,1],
ranges=IRanges(start=chr6.dnase[,2], end=chr6.dnase[,3]),
strand=Rle(rep("*",nrow(chr6.dnase))),
data=chr6.dnase[,5])
#Setting up the ideogram, genome, and RefSeq tracks
iTrack <- IdeogramTrack(genome = gen, chromosome = chrom, name=paste0(chrom))
gTrack <- GenomeAxisTrack(col="black", cex=1, name="", fontcolor="black")
rTrack <- UcscTrack(genome=gen, chromosome=chrom, track="NCBI RefSeq",
from=minbase, to=maxbase, trackType="GeneRegionTrack",
rstarts="exonStarts", rends="exonEnds", gene="name",
symbol="name2", transcript="name", strand="strand",
fill="darkblue",stacking="squish", name="RefSeq",
showId=TRUE, geneSymbol=TRUE)
#Ensure that the methylation data is ordered by chromosome and base position.
ann450kOrd <- ann450k[order(ann450k$chr,ann450k$pos),]
bvalOrd <- bval[match(ann450kOrd$Name,rownames(bval)),]
#Create the data tracks:
# create genomic ranges object from methylation data
cpgData <- GRanges(seqnames=Rle(ann450kOrd$chr),
ranges=IRanges(start=ann450kOrd$pos, end=ann450kOrd$pos),
strand=Rle(rep("*",nrow(ann450kOrd))),
betas=bvalOrd)
# methylation data track
methTrack <- DataTrack(range=cpgData,
groups=clinical$paper_Histologic.grade, # change this if your groups are different
genome = gen,
chromosome=chrom,
ylim=c(-0.05,1.05),
col=pal,
type=c("a","p"),
name="DNA Meth.\n(beta value)",
background.panel="white",
legend=TRUE,
cex.title=0.8,
cex.axis=0.8,
cex.legend=0.8)
# CpG island track
islandTrack <- AnnotationTrack(range=islandData, genome=gen, name="CpG Is.",
chromosome=chrom,fill="darkgreen")
# DNaseI hypersensitive site data track
dnaseTrack <- DataTrack(range=dnaseData, genome=gen, name="DNAseI",
type="gradient", chromosome=chrom)
# DMR position data track
dmrTrack <- AnnotationTrack(start=start, end=end, genome=gen, name="DMR",
chromosome=chrom,fill="darkred")
# Set up the tracklist and indicate the relative sizes of the different tracks.
# Finally, draw the plot using the plotTracks function
tracks <- list(iTrack, gTrack, methTrack, dmrTrack, islandTrack, dnaseTrack,
rTrack)
sizes <- c(2,2,5,2,2,2,3) # set up the relative sizes of the tracks
tiff( filename = "dmr.tiff", width = 15, height = 10, units = "in", res = 400)
plotTracks(tracks, from=minbase, to=maxbase, showTitle=TRUE, add53=TRUE,
add35=TRUE, grid=TRUE, lty.grid=3, sizes = sizes, length(tracks))
dev.off()
Rather than testing for DMCs and DMRs, we may be interested in testing for differences between group variances. This could be quite helpful for feature selection in ML based projects. In this situation, you may prefer to select variables that show great differences between groups.
#__________________________Differential variability_________________#
fitvar <- varFit(mval, design = design, coef = c(1,2))
# Summary of differential variability
summary(decideTests(fitvar))
topDV <- topVar(fitvar)
# Top 10 differentially variable CpGs between old vs. newborns
topDV
# visualization
# get beta values for ageing data
par(mfrow=c(5,2))
sapply(rownames(topDV)[1:10], function(cpg){
plotCpg(bval, cpg=cpg, pheno= clinical$paper_Histologic.grade,
ylab = "Beta values")
})
## if you got this error: Error in plot.new() : figure margins too large
#Do the following and try again:
#graphics.off()
#par("mar")
#par(mar=c(1,1,1,1))
Aberrant methylation of CpGs in promoter potentially could alter downstream gene expression levels by interfering with transcription factor function, and this process is known as cis-regulation. On the other hand, CpGs may also affect the expression of genes that are located far away from them in the genome. Usually, this could be observed when if CpGs position locations have happened to be in regulatory elements like enhancers. This type of regulation between CpG and gene is known as trans-regulation.
Steps toward cis-regulation analysis:
- Gene expression analysis (making normalized count matrice, finding differentially expressed genes)
- finding probes resided within promoters
- finding differentially methylated probes (|beta value| > 0.2)
- Performing correlation analysis to find those with |r| > 0.3 and p-value < 0.05
###gene expression data download and analysis
## expression data
query.exp <- GDCquery(project = "TCGA-BLCA",
platform = "Illumina HiSeq",
data.category = "Gene expression",
data.type = "Gene expression quantification",
file.type = "results",
legacy = TRUE)
GDCdownload(query.exp, method = "api")
dat<- GDCprepare(query = query.exp, save = TRUE, save.filename = "blcaExp.rda")
rna <-assay(dat)
clinical.exp = data.frame(colData(dat))
# find what we have for grade
table(clinical.exp$paper_Histologic.grade)
#High Grade Low Grade ND
#384 21 3
table(clinical.exp$paper_Histologic.grade, clinical.exp$paper_mRNA.cluster)
# Get rid of ND and NA samples, normal samples
clinical.exp <- clinical.exp[(clinical.exp$paper_Histologic.grade == "High Grade" |
clinical.exp$paper_Histologic.grade == "Low Grade"), ]
clinical.exp$paper_Histologic.grade[clinical.exp$paper_Histologic.grade == "High Grade"] <- "High_Grade"
clinical.exp$paper_Histologic.grade[clinical.exp$paper_Histologic.grade == "Low Grade"] <- "Low_Grade"
# since most of the low-graded are in the Luminal_papilary category, we remain focused on this type
clinical.exp <- clinical.exp[clinical.exp$paper_mRNA.cluster == "Luminal_papillary", ]
clinical.exp <- clinical.exp[!is.na(clinical.exp$paper_Histologic.grade), ]
# keep samples matched between clinical.exp file and expression matrix
rna <- rna[, row.names(clinical.exp)]
all(rownames(clinical.exp) %in% colnames(rna))
#TRUE
## A pipeline for normalization and gene expression analysis (edgeR and limma)
edgeR_limma.pipe = function(
exp_mat,
groups,
ref.group=NULL){
group = factor(clinical.exp[, groups])
if(!is.null(ref.group)){group = relevel(group, ref=ref.group)}
# making DGEList object
d = DGEList(counts= exp_mat,
samples=clinical.exp,
genes=data.frame(rownames(exp_mat)))
# design
design = model.matrix(~ group)
# filtering
keep = filterByExpr(d,design)
d = d[keep,,keep.lib.sizes=FALSE]
rm(keep)
# Calculate normalization factors to scale the raw library sizes (TMM and voom)
design = model.matrix(~ group)
d = calcNormFactors(d, method="TMM")
v = voom(d, design, plot=TRUE)
# Model fitting and DE calculation
fit = lmFit(v, design)
fit = eBayes(fit)
# DE genes
DE = topTable(fit, coef=ncol(design), sort.by="p",number = nrow(rna), adjust.method = "BY")
return(
list(
DE=DE, # DEgenes
voomObj=v, # NOrmalized counts
fit=fit # DE stats
)
)
}
# Runing the pipe
de.list <- edgeR_limma.pipe(rna,"paper_Histologic.grade", "Low_Grade" )
de.genes <- de.list$DE
#ordering differentially expressed genes
de.genes<-de.genes[with(de.genes, order(abs(logFC), adj.P.Val, decreasing = TRUE)), ]
# voomObj is normalized expression values on the log2 scale
norm.count <- data.frame(de.list$voomObj)
norm.count <- norm.count[,-1]
norm.count <- t(apply(norm.count,1, function(x){2^x}))
colnames(norm.count) <- chartr(".", "-", colnames(norm.count))
#______________preparing methylation data for cis-regulatory analysis____________#
# finding probes in promoter of genes
table(data.frame(ann450k)$Regulatory_Feature_Group) ## to find regulatory features of probes
# selecting a subset of probes associated with the promoter
promoter.probe <- rownames(data.frame(ann450k))[data.frame(ann450k)$Regulatory_Feature_Group
%in% c("Promoter_Associated", "Promoter_Associated_Cell_type_specific")]
# find gene probes with significantly different methylation status in
# low- and high-grade bladder cancer
low.g_id <- clinical$barcode[clinical$paper_Histologic.grade == "Low Grade"]
high.g_id <- clinical$barcode[clinical$paper_Histologic.grade == "High Grade"]
dbet <- data.frame (low.grade = rowMeans(bval[, low.g_id]),
high.grade = rowMeans(bval[, high.g_id]))
dbet$delta <- abs(dbet$low.grade - dbet$high.grade)
db.probe <- rownames(dbet)[dbet$delta > 0.2] # those with deltabeta > 0.2
db.probe <- db.probe %in% promoter.probe # those resided in promoter
# those genes flanked to promote probe
db.genes <- data.frame(ann450k)[rownames(data.frame(ann450k)) %in% db.probe, ]
db.genes <- db.genes[, c("Name","UCSC_RefGene_Name")]
db.genes <- tidyr::separate_rows(db.genes, Name, UCSC_RefGene_Name) # extending collapsed cells
db.genes$comb <- paste(db.genes$Name,db.genes$UCSC_RefGene_Name) # remove duplicates
db.genes <- db.genes[!duplicated(db.genes$comb), ]
db.genes <- db.genes[, -3]
# doing correlation analysis
# polishing matrices to have only high-grade samples
cis.bval.mat <- bval[, high.g_id]
cis.exp.mat <- norm.count[, rownames(clinical.exp)[clinical.exp$paper_Histologic.grade == "High_Grade"]]
#making patient name similar
colnames(cis.bval.mat) <- substr(colnames(cis.bval.mat),1,19)
colnames(cis.exp.mat) <- substr(colnames(cis.exp.mat),1,19)
cis.exp.mat <- cis.exp.mat[, colnames(cis.bval.mat)]
#editing expression matrix row name
df <- data.frame(name = row.names(cis.exp.mat)) # keeping rownames as a temporary data frame
df <- data.frame(do.call('rbind', strsplit(as.character(df$name),'|',fixed=TRUE))) # this do magic like "text to column" in Excel!
rowName <- df$X1
# find duplicates in rowName, if any
table(duplicated(rowName))
#FALSE TRUE
#20530 1
# in order to resolve duplication issue
rowName[duplicated(rowName) == TRUE]
#[1] "SLC35E2"
#
rowName[grep("SLC35E2", rowName)[2]] <- "SLC35E2_2"
#setting rna row names
row.names(cis.exp.mat) <- rowName
rm(df, rowName) # removing datasets that we do not need anymore
#__________________correlation analysis__________________#
cis.reg = data.frame( gene=character(0), cpg=character(0), pval=numeric(0), cor=numeric(0))
for (i in 1:nrow(db.genes)){
cpg = db.genes[i,][1]
gene = db.genes[i,][2]
if (gene %in% rownames(cis.exp.mat)){
df1 <- data.frame(exp= cis.exp.mat[as.character(gene), ])
df2 <- t(cis.bval.mat[as.character(cpg), ])
df <- merge(df1,df2, by = 0)
res <- cor.test(df[,2], df[,3], method = "pearson")
pval = round(res$p.value, 4)
cor = round(res$estimate, 4)
cis.reg[i,] <- c(gene, cpg, pval, cor)
}
}
cis.reg$adj.P.Val = round(p.adjust(cis.reg$pval, "fdr"),4)
cis.reg <- cis.reg[with(cis.reg, order(cor, adj.P.Val)), ]
# top pair visualization
# inspecting the results, C2orf74 gene has significant correlation with probes:
gen.vis <- merge(data.frame(exp= cis.exp.mat["C2orf74", ]),
t(cis.bval.mat[c("cg24757310", "cg01648237", "cg05037927", "cg16328106", "cg23405039", "cg18158151"), ]),
by = 0)
par(mfrow=c(3,2))
sapply(names(gen.vis)[3:8], function(cpg){
plot(x= gen.vis[ ,cpg], y = gen.vis[,2], xlab = "beta value",
xlim = c(0,1),
ylab = "normalized expression" ,
pch = 19,
main = paste("C2orf74",cpg, sep = "-"),
frame = FALSE)
abline(lm(gen.vis[,2] ~ gen.vis[ ,cpg], data = gen.vis), col = "blue")
})
# trans-regulation visualization
# adding genes to delta beta data
tran.reg <- data.frame(ann450k)[rownames(data.frame(ann450k)) %in% rownames(dbet), ][, c(4,24)]
tran.reg <- tidyr::separate_rows(tran.reg, Name, UCSC_RefGene_Name) # extending collapsed cells
tran.reg$comb <- paste(tran.reg$Name,tran.reg$UCSC_RefGene_Name) # remove duplicates
tran.reg <- tran.reg[!duplicated(tran.reg$comb), ]
tran.reg <- tran.reg[, -3]
names(tran.reg)[2] <- "gene"
# merging with deltabeta dataframe
dbet$Name <- rownames(dbet)
tran.reg <- merge(tran.reg, dbet, by = "Name")
# joining with differential expression analysis result
#editing expression matrix rowname
df <- data.frame(name = row.names(de.genes)) # keeping rownames as a temporary data frame
df <- data.frame(do.call('rbind', strsplit(as.character(df$name),'|',fixed=TRUE))) # this do magic like "text to column" in Excel!
df$X1[df$X1 == "?"] <- df$X2 # replace "? with entrez gene number
rowName <- df$X1
# find duplicates in rowName, if any
table(duplicated(rowName))
#FALSE TRUE
#16339 1
# in order to resolve the duplication issue
rowName[duplicated(rowName) == TRUE]
grep("SLC35E2", rowName)
#[1] 9225 15546
rowName[15546] <- "SLC35E2_2"
#setting rna row names
row.names(de.genes) <- rowName
rm(df, rowName) # removing datasets that we do not need anymore
de.genes$rownames.exp_mat. <- rownames(de.genes)
names(de.genes)[1] <- "gene"
# merging
tran.reg <- merge(tran.reg, de.genes, by = "gene")
# inspecting data
hist(tran.reg$logFC)
hist(tran.reg$delta) # delta was calculated as abs(delta), re-calculate to have original value
tran.reg$delta <- tran.reg$high.grade - tran.reg$low.grade
# defining a column for coloring
tran.reg$group <- ifelse(tran.reg$delta <= -0.2 & tran.reg$logFC <= -1.5, "hypo-down",
ifelse(tran.reg$delta <= -0.2 & tran.reg$logFC >= 1.5, "hypo-up",
ifelse(tran.reg$delta >= 0.2 & tran.reg$logFC <= -1.5, "hypr-down",
ifelse(tran.reg$delta >= 0.2 & tran.reg$logFC >= 1.5, "hypr-up", "not-sig"))))
# plotting
cols <- c("hypo-down" = "#B8860B", "hypo-up" = "blue", "not-sig" = "grey", "hypr-down" = "red", "hypr-up" = "springgreen4")
ggplot(tran.reg, aes(x = delta, y = logFC, color = group)) +
geom_point(size = 2.5, alpha = 1, na.rm = T) +
scale_colour_manual(values = cols) +
theme_bw(base_size = 14) +
geom_hline(yintercept = 1.5, colour="#990000", linetype="dashed") +
geom_hline(yintercept = -1.5, colour="#990000", linetype="dashed") +
geom_vline(xintercept = 0.2, colour="#990000", linetype="dashed") +
geom_vline(xintercept = -0.2, colour="#990000", linetype="dashed") +
xlab("mean methylation diffrences") +
ylab("Log2 expression change")
sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)
Matrix products: default
locale:
[1] LC_COLLATE=English_Canada.1252 LC_CTYPE=English_Canada.1252 LC_MONETARY=English_Canada.1252
[4] LC_NUMERIC=C LC_TIME=English_Canada.1252
attached base packages:
[1] grid stats4 parallel stats graphics grDevices utils datasets methods
[10] base
other attached packages:
[1] DMRcatedata_2.6.0
[2] ExperimentHub_1.14.2
[3] AnnotationHub_2.20.2
[4] BiocFileCache_1.12.1
[5] dbplyr_1.4.4
[6] edgeR_3.30.3
[7] RColorBrewer_1.1-2
[8] ggplot2_3.3.2
[9] Gviz_1.32.0
[10] DMRcate_2.2.2
[11] missMethyl_1.22.0
[12] IlluminaHumanMethylationEPICanno.ilm10b4.hg19_0.6.0
[13] limma_3.44.3
[14] IlluminaHumanMethylation450kmanifest_0.4.0
[15] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.0
[16] minfi_1.34.0
[17] bumphunter_1.30.0
[18] locfit_1.5-9.4
[19] iterators_1.0.12
[20] foreach_1.5.0
[21] Biostrings_2.56.0
[22] XVector_0.28.0
[23] SummarizedExperiment_1.18.2
[24] DelayedArray_0.14.1
[25] matrixStats_0.56.0
[26] Biobase_2.48.0
[27] GenomicRanges_1.40.0
[28] GenomeInfoDb_1.24.2
[29] IRanges_2.22.2
[30] S4Vectors_0.26.1
[31] BiocGenerics_0.34.0
[32] TCGAbiolinks_2.16.3
loaded via a namespace (and not attached):
[1] R.utils_2.10.1 tidyselect_1.1.0 RSQLite_2.2.0
[4] AnnotationDbi_1.50.3 htmlwidgets_1.5.1 BiocParallel_1.22.0
[7] munsell_0.5.0 codetools_0.2-16 preprocessCore_1.50.0
[10] statmod_1.4.34 withr_2.2.0 colorspace_1.4-1
[13] knitr_1.29 rstudioapi_0.11 labeling_0.3
[16] GenomeInfoDbData_1.2.3 farver_2.0.3 bit64_4.0.2
[19] pheatmap_1.0.12 rhdf5_2.32.2 downloader_0.4
[22] vctrs_0.3.2 generics_0.0.2 xfun_0.16
[25] biovizBase_1.36.0 R6_2.4.1 illuminaio_0.30.0
[28] AnnotationFilter_1.12.0 bitops_1.0-6 reshape_0.8.8
[31] assertthat_0.2.1 promises_1.1.1 scales_1.1.1
[34] bsseq_1.24.4 nnet_7.3-14 gtable_0.3.0
[37] ensembldb_2.12.1 rlang_0.4.7 genefilter_1.70.0
[40] splines_4.0.2 rtracklayer_1.48.0 lazyeval_0.2.2
[43] DSS_2.36.0 GEOquery_2.56.0 dichromat_2.0-0
[46] checkmate_2.0.0 BiocManager_1.30.10 yaml_2.2.1
[49] GenomicFeatures_1.40.1 backports_1.1.7 httpuv_1.5.4
[52] Hmisc_4.4-1 tools_4.0.2 nor1mix_1.3-0
[55] ellipsis_0.3.1 siggenes_1.62.0 Rcpp_1.0.5
[58] plyr_1.8.6 base64enc_0.1-3 progress_1.2.2
[61] zlibbioc_1.34.0 purrr_0.3.4 RCurl_1.98-1.2
[64] prettyunits_1.1.1 rpart_4.1-15 openssl_1.4.2
[67] cluster_2.1.0 tinytex_0.25 magrittr_1.5
[70] data.table_1.13.0 ProtGenerics_1.20.0 mime_0.9
[73] hms_0.5.3 xtable_1.8-4 XML_3.99-0.5
[76] jpeg_0.1-8.1 readxl_1.3.1 mclust_5.4.6
[79] gridExtra_2.3 compiler_4.0.2 biomaRt_2.44.1
[82] tibble_3.0.3 crayon_1.3.4 R.oo_1.24.0
[85] htmltools_0.5.0 later_1.1.0.1 Formula_1.2-3
[88] tidyr_1.1.1 DBI_1.1.0 MASS_7.3-51.6
[91] rappdirs_0.3.1 Matrix_1.2-18 readr_1.3.1
[94] cli_2.0.2 permute_0.9-5 quadprog_1.5-8
[97] R.methodsS3_1.8.1 pkgconfig_2.0.3 GenomicAlignments_1.24.0
[100] foreign_0.8-80 xml2_1.3.2 annotate_1.66.0
[103] rngtools_1.5 multtest_2.44.0 barplot3d_1.0.1
[106] beanplot_1.2 maftools_2.4.12 rvest_0.3.6
[109] doRNG_1.8.2 scrime_1.3.5 stringr_1.4.0
[112] VariantAnnotation_1.34.0 digest_0.6.25 cellranger_1.1.0
[115] base64_2.0 htmlTable_2.1.0 DelayedMatrixStats_1.10.1
[118] curl_4.3 shiny_1.5.0 Rsamtools_2.4.0
[121] gtools_3.8.2 lifecycle_0.2.0 nlme_3.1-148
[124] jsonlite_1.7.1 Rhdf5lib_1.10.1 fansi_0.4.1
[127] askpass_1.1 BSgenome_1.56.0 pillar_1.4.6
[130] lattice_0.20-41 fastmap_1.0.1 httr_1.4.2
[133] survival_3.1-12 interactiveDisplayBase_1.26.3 glue_1.4.1
[136] png_0.1-7 BiocVersion_3.11.1 bit_4.0.4
[139] stringi_1.4.6 HDF5Array_1.16.1 blob_1.2.1
[142] org.Hs.eg.db_3.11.4 latticeExtra_0.6-29 memoise_1.1.0
[145] dplyr_1.0.1
- A cross-package Bioconductor workflow for analysing methylation array data by Jovana Maksimovic, Belinda Phipson and Alicia Oshlack. accessed on September 2020.
- Integrative analysis of DNA methylation and gene expression identified cervical cancer-specific diagnostic biomarkers. Wanxue Xu et al.