Skip to content

hikaruri/PHYSBO-Tutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PHYSBO-Tutorial

How to use PHYSBO for our laboratory BO_sample

PHYSBO code

https://github.com/issp-center-dev/PHYSBO

DEMO with streamlit

https://share.streamlit.io/hikaruri/physbo-streamlit/main/main.py

https://physbo-streamlit.herokuapp.com/

source code is here

Preparation

Please clone this repository

git clone [email protected]:hikaruri/PHYSBO-Tutorial.git

Please prepare python3 and virtual enviroment (How to installation is here). And, you can install PHYSBO by pip

pip3 install physbo
pip3 install matplotlib

If you want to use jupyter-notebook,

pip3 install notebook

If you want to carry out the LASSO's optimization (this is my hobby),

pip3 install scikit-learn mglearn

Or, please use MateriApps LIVE!. Release 3.3 includes PHYSBO.

Tutorial

PHYSBO manual

References

  • Tsuyoshi Ueno, Trevor David Rhone, Zhufeng Hou, Teruyasu Mizoguchi and Koji Tsuda, COMBO: An Efficient Bayesian Optimization Library for Materials Science, Materials Discovery 4, 18-21 (2016). Available from https://doi.org/10.1016/j.md.2016.04.001
  • https://github.com/tsudalab/combo3
    • Almost functions are same as COMBO
  • 持橋 大地, 大羽 成征, ガウス過程と機械学習 (機械学習プロフェッショナルシリーズ), 講談社 (2019)
    • 日本語で一番わかりやすい資料

Buy me a coffee?

Buy Me A Coffee

(BTC) 15dY5GPgBLmgKzvwPE9FPG56yc34sYJRxq

About

How to use PHYSBO for our laboratory

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages