Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use candle_nn::LSTM in encodec. #1051

Merged
merged 3 commits into from
Oct 7, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 46 additions & 15 deletions candle-examples/examples/musicgen/encodec_model.rs
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
use crate::nn::conv1d_weight_norm;
use candle::{DType, IndexOp, Result, Tensor};
use candle_nn::{conv1d, Conv1d, Conv1dConfig, Module, VarBuilder};
use candle::{DType, IndexOp, Module, Result, Tensor};
use candle_nn::{conv1d, Conv1d, Conv1dConfig, VarBuilder};

// Encodec Model
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py
Expand Down Expand Up @@ -199,25 +199,34 @@ impl EncodecResidualVectorQuantizer {
// https://github.com/huggingface/transformers/blob/abaca9f9432a84cfaa95531de4c72334f38a42f2/src/transformers/models/encodec/modeling_encodec.py#L226
#[derive(Debug)]
struct EncodecLSTM {
layers: Vec<(Tensor, Tensor, Tensor, Tensor)>,
layers: Vec<candle_nn::LSTM>,
}

impl EncodecLSTM {
fn load(dim: usize, vb: VarBuilder, cfg: &Config) -> Result<Self> {
let vb = &vb.pp("lstm");
let mut layers = vec![];
for i in 0..cfg.num_lstm_layers {
let w_hh = vb.get((4 * dim, dim), &format!("weight_hh_l{i}"))?;
let w_ih = vb.get((4 * dim, dim), &format!("weight_ih_l{i}"))?;
let b_hh = vb.get(4 * dim, &format!("bias_hh_l{i}"))?;
let b_ih = vb.get(4 * dim, &format!("bias_ih_l{i}"))?;
layers.push((w_hh, w_ih, b_hh, b_ih))
for layer_idx in 0..cfg.num_lstm_layers {
let config = candle_nn::LSTMConfig {
layer_idx,
..Default::default()
};
let lstm = candle_nn::lstm(dim, dim, config, vb.clone())?;
layers.push(lstm)
}
Ok(Self { layers })
}
}

fn forward(&self, _xs: &Tensor) -> Result<Tensor> {
todo!()
impl Module for EncodecLSTM {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
use candle_nn::RNN;
let mut xs = xs.clone();
for layer in self.layers.iter() {
let states = layer.seq(&xs)?;
xs = layer.states_to_tensor(&states)?;
}
Ok(xs)
}
}

Expand Down Expand Up @@ -247,7 +256,9 @@ impl EncodecConvTranspose1d {
bias,
})
}
}

impl Module for EncodecConvTranspose1d {
fn forward(&self, _xs: &Tensor) -> Result<Tensor> {
todo!()
}
Expand Down Expand Up @@ -299,7 +310,9 @@ impl EncodecConv1d {
conv,
})
}
}

impl Module for EncodecConv1d {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
// TODO: padding, depending on causal.
let xs = self.conv.forward(xs)?;
Expand Down Expand Up @@ -340,7 +353,9 @@ impl EncodecResnetBlock {
shortcut,
})
}
}

impl Module for EncodecResnetBlock {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let residual = xs.clone();
let xs = xs.elu(1.)?;
Expand Down Expand Up @@ -439,8 +454,17 @@ impl EncodecEncoder {
})
}

fn forward(&self, _xs: &Tensor) -> Result<Tensor> {
todo!()
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = xs.apply(&self.init_conv)?;
for (resnets, conv) in self.sampling_layers.iter() {
for resnet in resnets.iter() {
xs = xs.apply(resnet)?;
}
xs = xs.elu(1.0)?.apply(conv)?;
}
xs.apply(&self.final_lstm)?
.elu(1.0)?
.apply(&self.final_conv)
}
}

Expand Down Expand Up @@ -507,8 +531,15 @@ impl EncodecDecoder {
})
}

fn forward(&self, _xs: &Tensor) -> Result<Tensor> {
todo!()
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = xs.apply(&self.init_conv)?.apply(&self.init_lstm)?;
for (conv, resnets) in self.sampling_layers.iter() {
xs = xs.elu(1.)?.apply(conv)?;
for resnet in resnets.iter() {
xs = xs.apply(resnet)?
}
}
xs.elu(1.)?.apply(&self.final_conv)
}
}

Expand Down