Skip to content

Commit

Permalink
[docs] fix links to PEFT guides
Browse files Browse the repository at this point in the history
  • Loading branch information
makelinux committed Feb 3, 2025
1 parent 0facdeb commit b641e0e
Showing 1 changed file with 2 additions and 2 deletions.
4 changes: 2 additions & 2 deletions docs/source/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,11 +26,11 @@ PEFT is integrated with the Transformers, Diffusers, and Accelerate libraries to
><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Get started</div>
<p class="text-gray-700">Start here if you're new to 🤗 PEFT to get an overview of the library's main features, and how to train a model with a PEFT method.</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./task_guides/image_classification_lora"
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./task_guides/prompt_based_methods"
><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">How-to guides</div>
<p class="text-gray-700">Practical guides demonstrating how to apply various PEFT methods across different types of tasks like image classification, causal language modeling, automatic speech recognition, and more. Learn how to use 🤗 PEFT with the DeepSpeed and Fully Sharded Data Parallel scripts.</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./conceptual_guides/lora"
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./conceptual_guides/adapter"
><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Conceptual guides</div>
<p class="text-gray-700">Get a better theoretical understanding of how LoRA and various soft prompting methods help reduce the number of trainable parameters to make training more efficient.</p>
</a>
Expand Down

0 comments on commit b641e0e

Please sign in to comment.